
SolasAI
Release

SolasAI LLC

Jun 13, 2023

Table of Contents

1 Examples 1
1.1 SolasAI Disparity Introduction . 1
1.2 SolasAI Disparity Calculations . 6
1.3 SolasAI Disparity Plots . 11

2 Python API Reference 15
2.1 solas_disparity . 15

3 As a PDF 63

4 Indices & Tables 65

 Python Module Index 67

 Index 69

 i

Chapter 1

Examples

1.1 SolasAI Disparity Introduction

1.1.1 Quick Start Summary

This example serves as an introductory text aiming to teach a user how to measure disparities with
the SolasAI library. While the example in this notebook is based on the calculation of a single metric,
the Adverse Impact Ratio (AIR), there are numerous other metrics available in SolasAI, as well as
a generic metric interface for developing custom disparity metrics. Usage of the other metrics is
discussed in other examples.
This notebook provides:

1. A short background on terms used throughout the SolasAI library.
2. An explanation of how to import and call functionality in the SolasAI disparity testing library.
3. An example of how to calculate an Adverse Impact Ratio using U.S. Home Mortgage Disclosure

Act (HMDA) data.
4. An overview of how to make customized or formatted tables and charts using the SolasAI

disparity testing library.

1.1.2 Background

Before jumping into the code, we provide a short explanation of several terms used in the code.
“Protected” and “Reference” Groups

In SolasAI’s current list of curated metrics, there is an assumption that one will test whether some
group(s) achieve outcomes that are at least as good as another group’s outcomes. The first group(s),
identified in SolasAI as protected_groups, typically consists of people who have been or are
continuing to experience some form of discrimination or disadvantage. The outcomes of these groups
are then compared to those of the reference_groups, which typically have not been subject to
the same type of discrimination or disadvantages.
Outside SolasAI, there are numerous ways that these classifications are made and described. For
example, often the word “protected” may be replaced with “minority”, “disadvantaged”, “test”, or
some other description, while “reference” may be replaced with “majority”, “advantaged”, “control”,
or some other description. Our use of the “protected” and “reference” categorization comes from our
experience working in litigation and regulatory compliance in the United States. It is not meant to
imply any particular value judgement regarding the classifications used.
A third attribute, group_categories is also used throughout the SolasAI library to delineate
between different protected-reference group combinations. For example, group_categories might
be race, sex, age, medical diagnoses, etc. By way of example, classifications most commonly used by

 1

SolasAI’s U.S. customers are:

group_categories protected_group reference_group
Race Black White
Race Hispanic White
Race Asian White
Sex / Gender Female Male
Age Age >= X Age < X

Outcomes, Labels, and Segments

SolasAI can be used to measure disparities created as the result of automated systems, semi-auto-
mated systems, or entirely subjective processes. Regardless of the use case, when the user calculates
disparity, they will need to specify the outcome attribute. In some cases, this will be a binary (i.e.,
“Yes” or “No”) outcome, such as whether a person was offered a job, loan, or sent a marketing offer.
In other cases, it may be a continuous value, such as a model’s probability of loan default, the amount
of time it takes for a person to be promoted, or an employee’s pay rate. Of the metrics SolasAI
provides, some are appropriate for the binary case (e.g., adverse_impact_ratio), while others are
appropriate for analyses of continuous values (e.g., standardized_mean_difference).
When measuring disparities that arise from the use of a model, and when the true outcome is known,
a user can specify the label attribute. Certain metrics, such as
the residual_standardized_mean_difference, require the label to be present because
the disparity measurement incorporates the label.
Some metrics, including the segmented_adverse_impact_ratio perform analyses on subsets of
the data and then aggregate the results. SolasAI refers to these subsets using the segment attribute.
Examples of segments might be different store locations, job openings, or job types. Care should be
used when deciding whether to incorporate segmentation into an analysis.
Statistical Significance and Practical Significance

SolasAI uses thresholds of statistical significance and “practical” significance to determine whether
any potential disparities found are sufficiently large to warrant further review. The SolasAI does not
provide guidance as to which standards are appropriate. What constitute appropriate and reasonable
standards may be driven by regulatory and legal requirements, business decisions, or other factors.
We suggest consulting with one’s compliance department, legal advisors, or consultants such as
BLDS, LLC (the consultancy from which SolasAI was founded) for advice.
That said, after one decides what thresholds to use, SolasAI allows users to test whether the disparity
metrics exceed those thresholds. In the case of statistical significance, each metric uses a measure-
ment of statistical significance that is appropriate or commonly used for that metric. As an example,
in the case of the AIR, statistical significance is calculated using either a Fisher’s Exact test or
a Chi-Squared test (depending on the size of the data). For the SMD, a t-test is used. In certain cases,
the user can specify either the test itself or certain attributes of the test. In United States legal and
regulatory standards, a two-sided p-value less than 5% (or, equivilently, a one-sided p-value less than
2.5%) is generally considered statistically significant. SolasAI does not provide guidance on whether
this standard is reasonable or appropriate for any particular use case.
Importantly, for SolasAI to identify that a result is “practically significant”, it must both be found to be
statistically significant and exceed the practical significance thresholds set. Most metrics in SolasAI
provide the option to specify two thresholds. The first is a percent_difference_threshold. If
a user sets a value greater than zero, then the raw difference in outcomes between the protected and
reference groups must exceed a particular value before a result is considered practically significant.
For example, if percent_difference_threshold = 0.02 for the AIR, and we find that Black
applicants receive offers 1% of the time, but White applicants receive them 2.5% of the time, then this
disparity will not be significant because the difference in outcomes is only 1.5%, which is less thna
the 2% threshold.
The second practical significance metric relates to the value of the metric itself. For example, when
calling the adverse_impact_ratio, one sets the air_threshold to a particular value. In

SolasAI, Release

2 Chapter 1. Examples

https://www.bldsllc.com/

the example below, we use air_threshold=0.80. This means that only results that are statistically
significantly different from parity and that have AIR values less than 0.80 will be considered practi-
cally significant.

1.1.3 Importing the Library and Data for Use in the Analysis

Below, we import the pandas and plotly libraries used to prepare and graph the data. SolasAI
relies on the plotly library for graphing. The final line of code, pio.renderers.default =
'svg' is only necessary because this workbook is hosted in GitHub, which cannot render plotly
graphics in their native format.

import pandas as pd
from pathlib import Path

Certain notebook environments have limited rendering functionality. Uncomment this cell as a poten-
tial workaround if plots are not displaying.

import plotly.io as pio
pio.renderers.default = "png"

It’s preferable to explicitly and specifically handle warnings. For the purposes of this notebook, we
will filter out all warnings.

from warnings import simplefilter
simplefilter("ignore")

SolasAI’s disparity library is imported just like any standard Python package. Here, we import
the library itself, which will be accessed as sd. Within sd, we will also access several other types of
functions, including:

1. The interface functionality, sd.ui, which allows users to do things like create nicely formatted
tables.

2. The SolasAI constants file, sd.const, which allows users to customize numerous settings
including column names and plot headings.

3. Access to a set of utility functions, sd.util, which provide additional useful functionality.

import solas_disparity as sd

Data Preparation

The following code imports a sample of the 2018 Home Mortgage Disclosure Act (HMDA) data.
The HMDA dataset includes information about nearly every home mortgage application in the United
States. This dataset includes information about the mortgage itself, such as the loan term and APR;
information about credit characteristics of the borrowers themselves, including the borrowers income
and debt-to-income (DTI) ratio; and information about the home being purchased, such as its location
and the value of the property. Importantly, it also includes information about each borrower’s race,
gender, and ethnicity. The data we are using is based only for applications where the borrower was
approved for the loan.

df = pd.read_csv("hmda.csv.gz", index_col="id")
df.sample(random_state=161803, n=5)

We next specify the groups that we will use to test disparities. In SolasAI, each protected and refer-
ence group must be its own variable in the input data. These variable names are then included in
the protected_group, reference_group, and group_categories lists that are used
throughout the SolasAI library.
For example, if we are going to test for evidence of disparities between Black and White applicants,
we must have one variable that identifies whether the person represented by the observation is Black
and one variable that identifies whether the person is White. Importantly, missing values for these
characteristics are generally allowed in SolasAI.

 SolasAI, Release

1.1. SolasAI Disparity Introduction 3

While more groups are available for analysis in the HMDA data, we limit the analysis in order to
make the output more tractable. The categorization used in this example is as follows:

group_categories protected_group reference_group
Race Black White
Race Native American White
Race Asian White
Sex Female Male
Ethnicity Hispanic Non-Hispanic

The three lists must all be the same length, with each element of the list corresponding to the same
comparison (e.g., the first element of the lists below have Black, White and Race, meaning that
Black applicants are being compared to White applicants, which is a comparison by race. The fifth
elements of each list are Female, Male, and Sex, which means that women are being compared to
men, and the type of comparison is by Sex).

protected_groups = ["Black", "Asian", "Native American", "Hispanic", "Female"]
reference_groups = ["White", "White", "White", "Non-Hispanic", "Male"]
group_categories = ["Race", "Race", "Race", "Ethnicity", "Sex"]

While not demonstrated in this notebook, a key benefit to the SolasAI library is its ability to calculate
disparities on groups where the characteristics are estimated, rather than known.
In this case, each person’s probability estimates are put into the fields identifying group membership.
For example, if the estimation procedure finds that a person has a 75% chance of being Black and
a 25% chance of being White, then that person’s Black and White variables would have values of 0.75
and 0.25, respectively.
A common example of this occurs in race and ethnicity estimation, where a person’s home address
and last name are used to calculate the probability that the person is Black or White (This is known as
the Bayesian Improved Surname Geocoding (“BISG”) method. See here for more detail).

1.1.4 Calculating the Adverse Impact Ratio on Prior Lending Decisions

Determining whether there is evidence of discrimination requires, to the extent possible, testing
a model or process before it is put into use as well as testing it when it is being used in production
(i.e., having an effective monitoring process). In this example, we focus on how an organization
would monitor a process that is already in production. Here, we use the HMDA data to test whether
there is evidence that members of the protected groups were less likely to receive low-priced loans
than members of the reference groups.
This type of analysis can be performed on subjective decisions, such as loan officer decisions to under-
write a loan, or a manager deciding whom to promote. It can also be performed on the outcomes of
automated decisioning processes, such as the use of a model to screen applicants, give job offers, or
some other similar process. It can also be performed on a model’s training or validation datasets prior
to the model being used in production.
Below, we use the sd.adverse_impact_ratio function to calculate the AIR. More detail about
the AIR can be found in the API documentation for solas_disparity.adverse_impact_ratio.

air = sd.adverse_impact_ratio(
 group_data=df, # dataset containing the protected and reference group
information
 protected_groups=protected_groups,
 reference_groups=reference_groups,
 group_categories=group_categories,
 outcome=df["Low-Priced"],
 sample_weight=None,
 air_threshold=0.80,
 percent_difference_threshold=0,
)

SolasAI, Release

4 Chapter 1. Examples

https://github.com/cfpb/proxy-methodology

1.1.5 Overview of SolasAI Disparity Objects with the AIR as an Example

Before jumping into the results of the analysis, below we discuss common elements of the SolasAI
disparity objects.
Disparity Object Output

In a notebook, a user can display a formatted summary of results by displaying the results object
using standard IPython notebook methods such as referencing the object in the last line of a cell or by
calling the display function. This summary includes three elements:

1. The disparity card, which summarizes information about the inputs and results of the test run.
2. A summary table, which prints more detailed results (and is discussed below).
3. A Plotly graph of the AIR metric.

Two examples are shown below.

air

from IPython.display import display

display(air)

from solas_disparity import ui
ui.show(air.summary_table)

Disparity Summary Table Output

Nearly all the important information about the results of the analysis is contained in
the summary_table. The discussion below describes how to access, format, and graph the informa-
tion in the summary_table.
The table can be accessed as a pandas DataFrame by referencing the summary_table attribute of
the results object:

air.summary_table

It can also be viewed as a styled Pandas dataframe by using the SolasAI sd.ui.show command.

sd.ui.show(air.summary_table)

The user can generate plots for specific columns of the summary table by using the plot method of
the results object. Below, we show examples of plotting the percent_favorable and air values.

air.plot(column="Percent Favorable")

air.plot(column="AIR")

Results can also be exported. Examples of these commands are shown below.

output = Path(".output")
output.mkdir(exist_ok=True)

air.to_excel(file_path=output / "air_summary_table.xlsx")

1.1.6 Utility Functions

utils.pgrg_ordered returns a unique and ordered list of protected AND reference groups. This
can be helpful when working with group data or with SolasAI results outside of SolasAI.

 SolasAI, Release

1.1. SolasAI Disparity Introduction 5

protected_and_reference_groups = sd.utils.pgrg_ordered(
 protected_groups=protected_groups,
 reference_groups=reference_groups,
)
protected_and_reference_groups

1.1.7 Customizing Output

A user can change column names used in all downstream results using
the solas_disparity.const interface. This can be very helpful when customizing output for
a particular use case. As an example, a lender might want to make the “Percent Favorable” column
display as “Loans Underwritten” or “Accepted Applications”, while an employer might want to make
the “Percent Favorable” column be “Job Offers” or “Promotions.”
Below is an example of how column names can be customized for the HMDA data use case.

sd.const.FAVORABLE = "Total Loan Offers"
sd.const.PERCENT_FAVORABLE = "Loan Offer Percent"
sd.const.OBSERVATIONS = "Obs. with Data"
sd.const.PERCENT_MISSING = "Pct Obs. Missing Data"
sd.const.PERCENT_DIFFERENCE_FAVORABLE = "Offer Percent Difference"
sd.const.AIR_VALUES = "Adverse Impact Ratio"

Formatting in the table can also be changed, as occurs in the code below. Here,
sd.ui.AUTO_FORMATTERS is a dictionary that contains the formats for each of the attributes in
the summary table. When changing the formats, one specifies the key of the dictionary as
the attribute from the const file (e.g., “FAVORABLE” when changing sd.const.FAVORABLE), and
the value as desired python formatter.

sd.ui.AUTO_FORMATTERS["TOTAL"] = "0,.0f"
sd.ui.AUTO_FORMATTERS["FAVORABLE"] = "0,.0f"
sd.ui.AUTO_FORMATTERS["P_VALUES"] = "0.1%"
sd.ui.AUTO_FORMATTERS["PERCENT_MISSING"] = "0.1%"

const_modified_air = sd.adverse_impact_ratio(
 group_data=df,
 protected_groups=protected_groups,
 reference_groups=reference_groups,
 group_categories=group_categories,
 outcome=df["Low-Priced"],
 sample_weight=None,
 air_threshold=0.80,
 percent_difference_threshold=0.0,
)

The summary table with new variable names and formatted values is printed below.

sd.ui.show(const_modified_air.summary_table)

1.2 SolasAI Disparity Calculations

import solas_disparity as sd
import pandas as pd

Certain notebook environments have limited rendering functionality. Uncomment this cell as a poten-
tial workaround if plots are not displaying.

import plotly.io as pio
pio.renderers.default = "png"

SolasAI, Release

6 Chapter 1. Examples

It’s preferable to explicitly and specifically handle warnings. For the purposes of this notebook, we
will filter out all warnings.

from warnings import simplefilter
simplefilter("ignore")

Some predictions were created using a tree model run on an HMDA dataset.

label = "Interest Rate"
data = pd.read_parquet("hmda_test.parquet")

Store commonly reused function arguments.

protected_groups = ["Black", "Asian", "Native American", "Hispanic", "Female"]
reference_groups = ["White", "White", "White", "Non-Hispanic", "Male"]
groups = sd.pgrg_ordered(
 protected_groups=protected_groups,
 reference_groups=reference_groups,
)
reused_arguments = dict(
 group_data=data[groups],
 protected_groups=protected_groups,
 reference_groups=reference_groups,
 group_categories=["Race", "Race", "Race", "Ethnicity", "Sex"],
 sample_weight=None,
)
binary_outcome = data["Prediction"] <= data["Prediction"].quantile(0.5)
binary_label = data[label] <= data[label].quantile(0.5)

1.2.1 Adverse Impact Ratio (AIR)

air = sd.adverse_impact_ratio(
 outcome=binary_outcome,
 air_threshold=0.8,
 percent_difference_threshold=0.0,
 **reused_arguments,
)

air

1.2.2 Standardized Mean Difference (SMD)

smd = sd.standardized_mean_difference(
 outcome=data["Prediction"],
 label=data[label],
 smd_threshold=30,
 lower_score_favorable=True,
 **reused_arguments,
)

smd

1.2.3 Adverse Impact Ratio by Quantile

airq = sd.adverse_impact_ratio_by_quantile(
 outcome=data["Prediction"],
 air_threshold=0.8,
 percent_difference_threshold=0.0,
 quantiles=[decile / 10 for decile in range(1, 11)],
 lower_score_favorable=True,

 SolasAI, Release

1.2. SolasAI Disparity Calculations 7

 **reused_arguments,
)

airq

1.2.4 Odds Ratio

odds_ratio = sd.odds_ratio(
 outcome=binary_outcome,
 odds_ratio_threshold=0.68,
 percent_difference_threshold=0.0,
 **reused_arguments,
)

odds_ratio

1.2.5 Categorical Adverse Impact Ratio

Generate an example categorical outcome.
categorical_outcome = pd.qcut(data["Prediction"], q=[0.0, 0.25, 0.5, 0.75, 1.0])
categories = categorical_outcome.cat.categories.to_series()
categories = pd.Series(["Best", "Great", "Good", "Bad"], index=categories.index)
categorical_outcome.replace(categories.to_dict(), inplace=True)

cair = sd.categorical_adverse_impact_ratio(
 outcome=categorical_outcome,
 category_order=list(reversed(categories.tolist())),
 air_threshold=0.8,
 percent_difference_threshold=0.0,
 **reused_arguments,
)

cair

1.2.6 Residual Standardized Mean Difference

rsmd = sd.residual_standardized_mean_difference(
 prediction=data["Prediction"],
 label=data[label],
 residual_smd_threshold=30,
 lower_score_favorable=True,
 **reused_arguments,
)

rsmd

1.2.7 Segmented Adverse Impact Ratio

Generate example income segments.
segments = pd.qcut(data["Income"], q=[0.0, 1 / 3, 2 / 3, 1.0])
categories = segments.cat.categories.to_series()
categories = pd.Series(
 ["Low Income", "Mid Income", "High Income"], index=categories.index
)
segments.replace(categories.to_dict(), inplace=True)

sair = sd.segmented_adverse_impact_ratio(

SolasAI, Release

8 Chapter 1. Examples

 outcome=binary_outcome,
 air_threshold=0.8,
 percent_difference_threshold=0.0,
 fdr_threshold=0.2,
 segment=segments,
 **reused_arguments,
)

sair

1.2.8 Custom Disparity Metric

We can recreate the AIR as an example of how custom disparity metrics can be used. Many more
advanced disparity metrics can benefit from the framework and additional validation provided by
the custom disparity metric interface.

Define a function for calculating perecent favorable.
def percent_favorable(outcome, sample_weight):
 return (outcome.mul(sample_weight, axis=0)).sum(
 axis=0, min_count=1
) / sample_weight.sum(axis=0, min_count=1)

custom_air = sd.custom_disparity_metric(
 outcome=binary_outcome,
 metric=percent_favorable,

difference_calculation=sd.types.DifferenceCalculation.REFERENCE_MINUS_PROTECTED,
 difference_threshold=lambda value: value > 0.0,
 ratio_calculation=sd.types.RatioCalculation.PROTECTED_OVER_REFERENCE,
 ratio_threshold=lambda value: value < 1.0,
 statistical_significance_test=sd.types.StatSigTest.FISHERS_OR_CHI_SQUARED,
 **reused_arguments,
)

custom_air

Note that the values from the custom disparity metric summary correspond to those of the original
AIR calculation.

pd.concat(
 (
 custom_air.summary_table["PERCENT FAVORABLE"],
 air.summary_table[sd.const.PERCENT_FAVORABLE],
),
 axis=1,
)

pd.concat(
 (
 custom_air.summary_table[sd.const.RATIO],
 air.summary_table[sd.const.AIR_VALUES],
),
 axis=1,
)

1.2.9 Confusion Matrix Metrics

SolasAI-provides ready-made implementations of confusion matrix metrics by wrapping around
the custom disparity metric.

(

 SolasAI, Release

1.2. SolasAI Disparity Calculations 9

 sd.false_discovery_rate,
 sd.false_negative_rate,
 sd.false_positive_rate,
 sd.precision,
 sd.true_negative_rate,
 sd.true_positive_rate,
)

precision_arguments = reused_arguments.copy()
precision_arguments["group_data"] = precision_arguments["group_data"].fillna(0.0)
precision = sd.precision(
 outcome=binary_outcome,
 label=binary_label,
 ratio_threshold=1.0,
 difference_threshold=0.0,
 **precision_arguments,
)
precision

sd.precision is essentially a convience wrapper for the following call to the custom disparity
metric.

def precision(y_true, y_pred, sample_weight):
 from sklearn.metrics import confusion_matrix

 tn, fp, fn, tp = confusion_matrix(
 y_true=y_true,
 y_pred=y_pred,
 sample_weight=sample_weight,
).ravel()

 return tp / (tp + fp)

sd.custom_disparity_metric(
 outcome=binary_outcome,
 metric=precision,
 label=binary_label,

difference_calculation=sd.types.DifferenceCalculation.REFERENCE_MINUS_PROTECTED,
 difference_threshold=lambda difference: difference > 0.0,
 ratio_calculation=sd.types.RatioCalculation.PROTECTED_OVER_REFERENCE,
 ratio_threshold=lambda ratio: ratio < 1.0,
 statistical_significance_test=sd.types.StatSigTest.BOOTSTRAPPING,
 p_value_threshold=0.05,
 **precision_arguments,
)

Additionally, statistical significance can be set to None for custom disparity metrics, causing statistical
significance calculations to be skipped.

sd.custom_disparity_metric(
 outcome=binary_outcome,
 metric=precision,
 label=binary_label,

difference_calculation=sd.types.DifferenceCalculation.REFERENCE_MINUS_PROTECTED,
 difference_threshold=lambda difference: difference > 0.0,
 ratio_calculation=sd.types.RatioCalculation.PROTECTED_OVER_REFERENCE,
 ratio_threshold=lambda ratio: ratio < 1.0,
 statistical_significance_test=None,
 p_value_threshold=0.05,
 **precision_arguments,

SolasAI, Release

10 Chapter 1. Examples

)

1.3 SolasAI Disparity Plots

import solas_disparity as sd
import pandas as pd

Certain notebook environments have limited rendering functionality. Uncomment this cell as a poten-
tial workaround if plots are not displaying.

import plotly.io as pio
pio.renderers.default = "png"

It’s preferable to explicitly and specifically handle warnings. For the purposes of this notebook, we
will filter out all warnings.

from warnings import simplefilter
simplefilter("ignore")

Some predictions have already been created using a tree model run on an HMDA dataset.

label = "Interest Rate"
data = pd.read_parquet("hmda_test.parquet")

Store commonly reused function arguments.

protected_groups = ["Black", "Asian", "Native American", "Hispanic", "Female"]
reference_groups = ["White", "White", "White", "Non-Hispanic", "Male"]
groups = sd.pgrg_ordered(
 protected_groups=protected_groups,
 reference_groups=reference_groups,
)
reused_arguments = dict(
 group_data=data[groups],
 protected_groups=protected_groups,
 reference_groups=reference_groups,
 group_categories=["Race", "Race", "Race", "Ethnicity", "Sex"],
 sample_weight=None,
)
binary_outcome = data["Prediction"] <= data["Prediction"].quantile(0.5)
binary_label = data[label] <= data[label].quantile(0.5)

1.3.1 Single-Level Plots

Certain disparity functions provide a result for each group. Their associated plots are single figures
and are referred to as single-level plots.
Calculate Disparity

Let’s use a result from the AIR function as an example for single-index plots.

air = sd.adverse_impact_ratio(
 outcome=binary_outcome,
 air_threshold=0.8,
 percent_difference_threshold=0.0,
 **reused_arguments
)

Output Results

The default output for a disparity calculation result object includes a default plot.

 SolasAI, Release

1.3. SolasAI Disparity Plots 11

air

The .plot() method on the result object returns the plotly figure directly.

figure = air.plot()
type(figure)

figure

In the case of AIR, the plot function also takes an column argument, allowing specification of
a different column in the summary table to be plotted.

air.plot(column=sd.const.TOTAL)

The .plot() method is simply a convenience wrapper for the associated plot function in
the solas_disparity.plots namespace. For further information, reference this plot function in
rendered documention. To have stronger linting support, one can optionally call this function directly.

sd.plots.plot_adverse_impact_ratio(disparity=air)

1.3.2 Multi-Level Plots

Certain other disparity functions provide a result for each secondary level for each group.
Calculate Disparity

Use AIR by quantile as an example for multi-level plots.

airq = sd.adverse_impact_ratio_by_quantile(
 outcome=data["Prediction"],
 air_threshold=0.8,
 percent_difference_threshold=0.0,
 quantiles=[decile / 10 for decile in range(1, 11)],
 **reused_arguments,
)

Output Results

The default output for a disparity calculation result object includes a default plot. Note that a new
subplot is created for each quantile.

airq

The .plot() method on the result object returns the plotly figure directly.

type(airq.plot())

The .plot() method also takes an optional argument column just like a single-index plot.

airq.plot(column=sd.const.PERCENT_DIFFERENCE_FAVORABLE)

A user can also specify a single group to extract a single by-level plot for.

airq.plot(group="Black")

airq.plot(group="Black", column=sd.const.PERCENT_DIFFERENCE_FAVORABLE)

.plot() also has a quantile argument to return a figure for a single quantile. The quantile argu-
ment is specific to AIR by quantile. For example, the equivalent argument for a categorical AIR calcu-
lation would be category.

airq.plot(quantile=0.1)

SolasAI, Release

12 Chapter 1. Examples

airq.plot(quantile=0.5)

Another argument exposed by multi-level plots is separate. It is used to separate a single plotly
figure containing multiple subplots into a list of separate plotly figures for each level. It is convenience
argument equivalent to calling .plot() with the quantile argument for every quantile.

airq_figures = airq.plot(separate=True)
type(airq_figures)

airq_figures[0]

airq_figures[4]

As with any other plot, the full documentation and typing support can be found in
the solas_disparity.plots namespace.

sd.plots.plot_adverse_impact_ratio_by_quantile

1.3.3 More Plot Functionality

Since the figures returned by plot functions are plotly figures, reference the plotly documentation for
more functionality. https://plotly.com/python-api-reference/generated/plotly.graph_objects.Fig-
ure.html#plotly.graph_objects.Figure
The update_layout method to modify overall attributes of the figure, including its height and
width. https://plotly.com/python-api-reference/generated/plotly.graph_objects.Figure.html#plotly.-
graph_objects.Figure.update_layout

air.plot().update_layout(height=500, width=500)

Plots can be saved as images using the write_image method. Here’s an example saving a plot as
an svg file. https://plotly.com/python-api-reference/generated/plotly.graph_objects.Figure.html#-
plotly.graph_objects.Figure.write_image

air.plot().write_image("air.svg")

Or as a png…

air.plot().write_image("air.png")

The size of plot when being saved to an image can also be controlled without affecting the original
figure object.

air.plot().write_image("air_resized.svg", height=800, width=1100)

Clean up files.

from pathlib import Path

to_clean = ["air.svg", "air_resized.svg", "air.png"]
for name in to_clean:
 if Path(name).exists():
 Path(name).unlink()

 SolasAI, Release

1.3. SolasAI Disparity Plots 13

SolasAI, Release

14 Chapter 1. Examples

Chapter 2

Python API Reference

solas_disparity

2.1 solas_disparity

Functions

adverse_impact_ratio
Calculate the Adverse Impact Ratio (AIR) for
a given set of protected and reference groups.

adverse_impact_ratio_by_quantile
Calculate the Adverse Impact Ratio for speci-
fied quantiles.

categorical_adverse_impact_ratio
Calculate the Adverse Impact Ratio for a set of
favorability-ordinal categorical outcomes.

custom_disparity_metric
Provide a modular format that to create
a custom disparity metric.

false_discovery_rate
This method calculates the False Discovery
Rate (FDR) for a given set of protected and
reference groups.

false_negative_rate
This method calculates the False Negative Rate
(FNR) for a given set of protected and refer-
ence groups.

false_positive_rate
This method calculates the False Positive Rate
(FPR) for a given set of protected and reference
groups.

odds_ratio
Calculate the Odds Ratio for a given set of
protected and reference groups.

pgrg_ordered
Create an ordered list of protected and refer-
ence groups.

precision
This method calculates the Precision for
a given set of protected and reference groups.

residual_standardized_mean_difference
Calculate the Standardized Mean Difference of
residuals for a given set of protected and refer-
ence groups.

scoring_impact_ratio
Calculate the scoring impact ratio, an impact
ratio where the boolean outcome is whether
an individual scored above the median.

 15

segmented_adverse_impact_ratio

Calculates within-segment and cross-segment
disparate impact and statistical significance
statistics for dichotomous outcomes when it is
appropriate to aggregate segment results to
a single cross-segment measurement of dispar-
ity.

selection_impact_ratio Calculate the selection impact ratio.

standardized_mean_difference
Calculate the Standardized Mean Difference
(SMD) for a given set of protected and refer-
ence groups.

true_negative_rate
This method calculates the True Negative Rate
(TNR) for a given set of protected and refer-
ence groups.

true_positive_rate
This method calculates the True Positve Rate
(TPR) for a given set of protected and reference
groups.

2.1.1 adverse_impact_ratio

solas_disparity.adverse_impact_ratio (...)
Calculate the Adverse Impact Ratio (AIR) for a given set of protected and reference groups.
AIR is defined as the percentage of favorable outcomes of the protected group divided by
the percentage of favorable outcomes of the reference group. For example, if 10% of Black or
African American applicants were to receive a loan offer, but 20% of Non-Hispanic White appli-
cants were to receive a loan offer, the AIR is equal to 10% / 20% = 0.50.
\text{AIR}_\text{Protected Group} = \frac{\text{% Favorable Outcome}_\text{Protected
Group}}{\text{% Favorable Outcome}_\text{Reference Group}}
Or, in terms of the confusion matrix:
\text{AIR}_\text{Protected Group} = \frac{\frac{P_{\text{Protected Group}}}{(P_{\text{Protected
Group}} + N_{\text{Protected Group}})}}{\frac{P_{\text{Reference Group}}}{(P_{\text{Reference
Group}} + N_{\text{Reference Group}})}}
Where P represents the positive outcomes (i.e., TP + FP) and N represents the negative outcomes
(i.e., TN + FN). Importantly, for this implementation of the AIR, we consider P to be favorable
from the perspective of the person being scored by the model.
In some academic literature, the AIR is called the “disparate impact” metric. While it is true that
the AIR may be used as a measure of disparate impact, other metrics are used to measure
disparate impact in the legal sense of the word. Additionally, the AIR can also be used to
measure other forms of discrimination, such as disparate treatment.
An AIR is considered practically significant if the AIR is:

1. less than a chosen air_threshold,
2. statistically significantly different than parity,
3. AND if its percent difference greater than a chosen
percent_difference_threshold.

Parameters • group_data (pd.DataFrame) – Dataframe containing columns for group
data.

• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

SolasAI, Release

16 Chapter 2. Python API Reference

• outcome (pd.Series) – Boolean outcome series where a value of 1 is
assumed to be favorable.

• air_threshold (float) – Adverse Impact Ratio threshold value.
• percent_difference_threshold (float) – Percent difference threshold

value. For example, a 20% difference is input as
percent_difference_threshold=0.2.

• label (Optional[pd.Series], optional) – Boolean label, true outcome,
and/or target series evaluated alongside outcome. Defaults to None.

• sample_weight (Optional[pd.Series], optional) – Sample weight
series. Has the same length as group_data. Defaults to None.

• max_for_fishers (int, optional) – Maximum value of samples for Fish-
er’s exact test to be used. Defaults to MAX_FOR_FISHERS.

• shortfall_method (Optional[types.ShortfallMethod],
optional) – Method used for shortfall calculation. Defaults to Shortfall-
Method.TO_REFERENCE_MEAN.

Returns Object containing results of the disparity calculation.
Return type types.Disparity

2.1.2 adverse_impact_ratio_by_quantile

solas_disparity.adverse_impact_ratio_by_quantile (...)
Calculate the Adverse Impact Ratio for specified quantiles.
AIR is defined as the percentage of favorable outcomes of the protected group divided by
the percentage of favorable outcomes of the reference group.
\text{AIR}_\text{Protected Group} = \frac{\text{% Favorable Outcome}_\text{Protected
Group}}{\text{% Favorable Outcome}_\text{Reference Group}}
An AIR is considered practically significant if the AIR is:

1. less than a chosen air_threshold,
2. statistically significantly different than parity,
3. AND greater than a chosen percent_difference_threshold.

Parameters • group_data (DataFrame) – Dataframe containing columns for group data.
• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (Series) – Outcome series.
• air_threshold (float) – Adverse Impact Ratio threshold value.
• percent_difference_threshold (float) – Percent difference threshold

value. For example, a 20% difference is input as
percent_difference_threshold=0.2.

• quantiles (List[float]) – Set of quantiles at which the AIR will be calcu-
lated (e.g. [0.2, 0.4, 0.6, 0.8, 1.0]).

• label (Optional[Series], optional) – Label, true outcome, and/or
target series evaluated alongside outcome. Defaults to None.

• sample_weight (Optional[Series], optional) – Sample weight series.

 SolasAI, Release

2.1. solas_disparity 17

Has the same length as group_data. Defaults to None.
• max_for_fishers (int, optional) – Maximum value of samples for Fish-

er’s exact test to be used. Defaults to MAX_FOR_FISHERS.
• lower_score_favorable (bool, optional) – Whether a lower value of
outcome is favorable. Defaults to True.

• merge_bins (bool, optional) – Whether quantiles with same cutoff are
merged into one. Defaults to True.

Returns Object containing results of the disparity calculation.
Return type Disparity

2.1.3 categorical_adverse_impact_ratio

solas_disparity.categorical_adverse_impact_ratio (...)
Calculate the Adverse Impact Ratio for a set of favorability-ordinal categorical outcomes.
AIR is defined as the percentage of favorable outcomes of the protected group divided by
the percentage of favorable outcomes of the reference group.
\text{AIR}_\text{Protected Group} = \frac{\text{% Favorable Outcome}_\text{Protected
Group}}{\text{% Favorable Outcome}_\text{Reference Group}}
An AIR is considered practically significant if the AIR is:

1. less than a chosen air_threshold,
2. statistically significantly different than parity,
3. AND greater than a chosen percent_difference_threshold.

Parameters • group_data (DataFrame) – Dataframe containing columns for group data.
• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (Series) – Outcome series of elements of the set category_order.
• air_threshold (float) – Adverse Impact Ratio threshold value.
• percent_difference_threshold (float) – Percent difference threshold

value. For example, a 20% difference is input as
percent_difference_threshold=0.2.

• category_order (List[str]) – Series of outcome categories in ascending
order of favorability (e.g. ["bad", "good", "great", "best"]).

• label (Optional[Series], optional) – Label, true outcome, and/or
target series evaluated alongside outcome. Defaults to None.

• sample_weight (Optional[Series], optional) – Sample weight series.
Has the same length as group_data. Defaults to None.

• max_for_fishers (int, optional) – Maximum value of samples for Fish-
er’s exact test to be used. Defaults to MAX_FOR_FISHERS.

Returns Object containing results of the disparity calculation.
Return type Disparity

SolasAI, Release

18 Chapter 2. Python API Reference

2.1.4 custom_disparity_metric

solas_disparity.custom_disparity_metric (...)
Provide a modular format that to create a custom disparity metric.
Parameters • group_data (DataFrame) – Dataframe containing columns for group data.

• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (Series) – Outcome series.
• metric (Callable[..., Union[int, float]]) – A function of

an outcome, label, and/or sample weight that returns a scalar. Typical argu-
ment names such as those used by sklearn.metrics or SolasAI disparity testing
functions.

• label (Optional[Series], optional) – Label, true outcome, and/or
target series evaluated alongside outcome. Defaults to None.

• sample_weight (Optional[Series], optional) – Sample weight series.
Has the same length as group_data. Defaults to None.

• difference_calculation (Optional[DifferenceCalculation],
optional) – Method for calculating the difference between group metrics.
Defaults to DifferenceCalculation.REFERENCE_MINUS_PROTECTED.

• difference_threshold (Optional[Callable[[Union[int,
float]], bool]], optional) – A function of the difference between
protected and reference group metrics that returns whether the difference is
significant. This will be factored into practical significance if not None. Defaults
to lambda difference:(difference < 0.0).

• ratio_calculation (Optional[RatioCalculation], optional) –
Method for calculating the ratio between group metrics. Defaults to RatioCal-
culation.PROTECTED_OVER_REFERENCE.

• ratio_threshold (Optional[Callable[[Union[int, float]],
bool]], optional) – A function of the ratio between protected and refer-
ence group metrics that returns whether the difference is significant. This will
be factored into practical significance if not None. Defaults to None.

• statistical_significance_test (Optional[StatSigTest],
optional) – Statistical significance test that will be factored into practical
significance if not None. Defaults to None.

• p_value_threshold (float, optional) – P-value threshold for statistical
significance. Defaults to 0.05.

• statistical_significance_arguments (Dict[str, Any],
optional) – A dictionary of arbitrary arguments to the statistical significance
test function. Every function corresponds to a member of StatSigTest.
Defaults to dict().

Returns Object containing results of the disparity calculation.
Return type Disparity

 SolasAI, Release

2.1. solas_disparity 19

2.1.5 false_discovery_rate

solas_disparity.false_discovery_rate (...)
This method calculates the False Discovery Rate (FDR) for a given set of protected and reference
groups.

False Discovery Rate (FDR) = False Positives / (False Positives + True Positives)
An TPR is considered “practically significant” if the FDR is:

1. higher than ratio_threshold.
2. statistically significantly different than parity, AND
3. lesser than difference_threshold.

Note Ratio is defined as (FDR of Reference Group) / (FDR of Protected Group)
Difference is defined as (FDR of Protected Group) - (FDR of Reference Group)

Parameters • group_data (DataFrame) – Dataframe containing columns for group data.
• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (Series) – Outcome series.
• label (Optional[Series], optional) – Label, true outcome, and/or

target series evaluated alongside outcome. Defaults to None.
• ratio_threshold (float) – Threshold at which a ratio is considered signifi-

cant.
• difference_threshold (float) – Threshold at which a difference is

considered significant.
• sample_weight (Optional[Series], optional) – Sample weight series.

Has the same length as group_data. Defaults to None.
• statistical_significance_test (Optional[StatSigTest],
optional) – Statistical significance test that will be factored into practical
significance if not None. Defaults to None.

• p_value_threshold (float, optional) – Statistical significance test that
will be factored into practical significance if not None. Defaults to None.
Defaults to 0.05.

• statistical_significance_arguments (Dict[str, Any],
optional) – A dictionary of arbitrary arguments to the statistical significance
test function. Every function corresponds to a member of StatSigTest.
Defaults to dict().

Returns Object containing results of the disparity calculation.
Return type Disparity

SolasAI, Release

20 Chapter 2. Python API Reference

2.1.6 false_negative_rate

solas_disparity.false_negative_rate (...)
This method calculates the False Negative Rate (FNR) for a given set of protected and refer-
ence groups.

Also know as Fall-out.
False Negative Rate (FNR) = False Negatives / (False Negatives + True Positives)
An TPR is considered “practically significant” if the FPR is:

1. higher than ratio_threshold.
2. statistically significantly different than parity, AND
3. lesser than difference_threshold.

Note Ratio is defined as (FNR of Reference Group) / (FNR of Protected Group)
Difference is defined as (FNR of Protected Group) - (FNR of Reference Group)

Parameters • group_data (DataFrame) – Dataframe containing columns for group data.
• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (Series) – Outcome series.
• label (Optional[Series], optional) – Label, true outcome, and/or

target series evaluated alongside outcome. Defaults to None.
• ratio_threshold (float) – Threshold at which a ratio is considered signifi-

cant.
• difference_threshold (float) – Threshold at which a difference is

considered significant.
• sample_weight (Optional[Series], optional) – Sample weight series.

Has the same length as group_data. Defaults to None.
• statistical_significance_test (Optional[StatSigTest],
optional) – Statistical significance test that will be factored into practical
significance if not None. Defaults to None.

• p_value_threshold (float, optional) – Statistical significance test that
will be factored into practical significance if not None. Defaults to None.
Defaults to 0.05.

• statistical_significance_arguments (Dict[str, Any],
optional) – A dictionary of arbitrary arguments to the statistical significance
test function. Every function corresponds to a member of StatSigTest.
Defaults to dict().

Returns Object containing results of the disparity calculation.
Return type Disparity

 SolasAI, Release

2.1. solas_disparity 21

2.1.7 false_positive_rate

solas_disparity.false_positive_rate (...)
This method calculates the False Positive Rate (FPR) for a given set of protected and reference
groups.

Also know as Fall-out.
False Positive Rate (FPR) = False Positives / (False Positives + True Negatives)
An TPR is considered “practically significant” if the FPR is:

1. higher than ratio_threshold.
2. statistically significantly different than parity, AND
3. lesser than difference_threshold.

Note Ratio is defined as (FPR of Reference Group) / (FPR of Protected Group)
Difference is defined as (FPR of Protected Group) - (FPR of Reference Group)

Parameters • group_data (DataFrame) – Dataframe containing columns for group data.
• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (Series) – Outcome series.
• label (Optional[Series], optional) – Label, true outcome, and/or

target series evaluated alongside outcome. Defaults to None.
• ratio_threshold (float) – Threshold at which a ratio is considered signifi-

cant.
• difference_threshold (float) – Threshold at which a difference is

considered significant.
• sample_weight (Optional[Series], optional) – Sample weight series.

Has the same length as group_data. Defaults to None.
• statistical_significance_test (Optional[StatSigTest],
optional) – Statistical significance test that will be factored into practical
significance if not None. Defaults to None.

• p_value_threshold (float, optional) – Statistical significance test that
will be factored into practical significance if not None. Defaults to None.
Defaults to 0.05.

• statistical_significance_arguments (Dict[str, Any],
optional) – A dictionary of arbitrary arguments to the statistical significance
test function. Every function corresponds to a member of StatSigTest.
Defaults to dict().

Returns Object containing results of the disparity calculation.
Return type Disparity

SolasAI, Release

22 Chapter 2. Python API Reference

2.1.8 odds_ratio

solas_disparity.odds_ratio (...)
Calculate the Odds Ratio for a given set of protected and reference groups.
The odds of a favorable outcome is the probability of a favorable outcome divided by its comple-
ment.
\text{Favorable Outcome Odds} = \frac{P(\text{Favorable Outcome})}{P(\text{Favorable
Outcome})^\complement}
The Odds Ratio is defined as the odds of a favorable outcome of the protected group divided by
that of the reference group.
\text{Odds Ratio}_\text{Protected Group} = \frac{\text{Favorable Outcome Odds}_\text{Pro-
tected Group}}{\text{Favorable Outcome Odds}_\text{Reference Group}}
An Odds Ratio is considered practically significant if lower_score_favorable=False and
the Odds Ratio is:

1. lesser than a chosen odds_ratio_threshold,
2. statistically significantly different than parity,
3. AND greater than a chosen percent_difference_threshold.

Alternatively, an Odds Ratio is considered practically significant if
lower_score_favorable=True and the Odds Ratio is:

1. greater than a chosen odds_ratio_threshold,
2. statistically significantly different than parity,
3. AND greater than a chosen percent_difference_threshold.

Parameters • group_data (DataFrame) – Dataframe containing columns for group data.
• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (Series) – Boolean outcome series.
• odds_ratio_threshold (float) – Odds Ratio threshold value.
• percent_difference_threshold (float) – Percent difference threshold

value. For example, a 20% difference is input as
percent_difference_threshold=0.2.

• lower_score_favorable (bool, optional) – Whether a lower value of
outcome (i.e. 0) is favorable. Defaults to False.

• label (Optional[Series], optional) – Boolean label, true outcome,
and/or target series evaluated alongside outcome. Defaults to None.

• sample_weight (Optional[Series], optional) – Sample weight series.
Has the same length as group_data. Defaults to None.

• max_for_fishers (int, optional) – Maximum value of samples for Fish-
er’s exact test to be used. Defaults to MAX_FOR_FISHERS.

Returns Object containing results of the disparity calculation.
Return type Disparity

 SolasAI, Release

2.1. solas_disparity 23

2.1.9 pgrg_ordered

solas_disparity.pgrg_ordered (...)
Create an ordered list of protected and reference groups.
Parameters • protected_groups (List[str]) – List of protected groups.

• reference_groups (List[str]) – List of reference groups associated with
each protected group.

• group_categories (Optional[List[str]], optional) – Group cate-
gories associated with each protected group. If None, ordered group categories
are returned alongside unique group names. Defaults to None.

Returns List of ordered protected and reference groups. May also include group categories if
group_categories is set.

Return type List[str]
Examples

>>> protected_groups = ["black", "asian", "female", "hispanic"]
>>> reference_groups = ["white", "white", "male", "white"]
>>> pgrg_orderd(protected_groups, reference_groups)
["black", "asian", "hispanic", "white", "female", "male"]

2.1.10 precision

solas_disparity.precision (...)
This method calculates the Precision for a given set of protected and reference groups.

Also know as Precision.
Precision = True Positives / (True Positives + False Positives)
An TPR is considered “practically significant” if the Precision is:

1. less than a chosen ratio_threshold.
2. statistically significantly different than parity, AND
3. greater than difference_threshold.

Note Ratio is defined as (Precision of Protected Group) / (Precision of Reference Group)
Difference is defined as (Precision of Reference Group) - (Precision of Protected Group)

Parameters • group_data (DataFrame) – Dataframe containing columns for group data.
• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (Series) – Outcome series.
• label (Optional[Series], optional) – Label, true outcome, and/or

target series evaluated alongside outcome. Defaults to None.
• ratio_threshold (float) – Threshold at which a ratio is considered signifi-

cant.
• difference_threshold (float) – Threshold at which a difference is

SolasAI, Release

24 Chapter 2. Python API Reference

considered significant.
• sample_weight (Optional[Series], optional) – Sample weight series.

Has the same length as group_data. Defaults to None.
• statistical_significance_test (Optional[StatSigTest],
optional) – Statistical significance test that will be factored into practical
significance if not None. Defaults to None.

• p_value_threshold (float, optional) – Statistical significance test that
will be factored into practical significance if not None. Defaults to None.
Defaults to 0.05.

• statistical_significance_arguments (Dict[str, Any],
optional) – A dictionary of arbitrary arguments to the statistical significance
test function. Every function corresponds to a member of StatSigTest.
Defaults to dict().

Returns Object containing results of the disparity calculation.
Return type Disparity

2.1.11 residual_standardized_mean_difference

solas_disparity.residual_standardized_mean_difference (...)
Calculate the Standardized Mean Difference of residuals for a given set of protected and reference
groups.
A residual is the label value minus the predicted value.
\text{Residual} = y - \hat{y}
The Residual SMD is the mean residual of a protected group minus the mean residual of a refer-
ence group all divided by the standard deviation of residuals.
\text{Residual SMD}_\text{Protected Group} = \frac{\text{Mean Residual}_{\text{Protected
Group}} - \text{Mean Residual}_{\text{Reference Group}}}{s}
A Residual SMD is considered practically significant if lower_score_favorable=True and
the Residual SMD is:

1. greater in magnitude than a chosen residual_smd_threshold
2. AND statistically significantly different than zero.

Alternatively, a Residual SMD is considered practically significant if
lower_score_favorable=False and the Residual SMD is:

1. lesser in magnitude than a chosen residual_smd_threshold
2. AND statistically significantly different than zero.

Parameters • group_data (DataFrame) – Dataframe containing columns for group data.
• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups.
• group_categories (List[str]) – List of group categories.
• prediction – (Series): Predictions series.
• label (Series) – Label, true outcome, and/or target series evaluated along-

side outcome. Defaults to None.
• residual_smd_threshold (float) – Residual Standardized Mean Differ-

ence threshold value.
• lower_score_favorable (bool, optional) – Whether a lower value of
label - prediction is favorable. Defaults to True.

 SolasAI, Release

2.1. solas_disparity 25

• sample_weight – Optional[Series]: Sample weight series. Has the same
length as group_data. Defaults to None.

• residual_smd_denominator (Union[ResidualSMDDenominator,
str], optional) – Residual Standardized Mean Difference denominator
calculation. Defaults to ResidualSMDDenominator.POPULATION.

Returns Object containing results of the disparity calculation.
Return type Disparity

2.1.12 scoring_impact_ratio

solas_disparity.scoring_impact_ratio (...)
Calculate the scoring impact ratio, an impact ratio where the boolean outcome is whether an indi-
vidual scored above the median.
Parameters • group_data (DataFrame) – Dataframe containing columns for group data.

• race_ethnicity_groups (List[str]) – A list of race/ethnicity groups
corresponding to individual columns in group_data (e.g. [“Hispanic or Latino”,
“White”, “Black or African American”, “Native Hawaiian or Pacific Islander”,
“Asian”, “Native American or Alaska Native”, “Two or More Races”]).

• gender_groups (List[str]) – A list of gender groups corresponding to
individual columns in group_data (e.g. [“Male”, “Female”]).

• outcome (Series) – Outcome series of scores.
• ratio_threshold (float) – Threshold at which a ratio is considered signifi-

cant.
• difference_threshold (float) – Threshold at which a difference is

considered significant.
• sample_weight (Optional[Series], optional) – Sample weight series.

Has the same length as group_data. Defaults to None.
• max_for_fishers (int, optional) – Maximum value of samples for Fish-

er’s exact test to be used. Defaults to MAX_FOR_FISHERS.
• shortfall_method (Optional[types.ShortfallMethod],
optional) – Method used for shortfall calculation. Defaults to Shortfall-
Method.TO_REFERENCE_MEAN.

• drop_small_groups (Optional[bool], optional) – Whether to sepa-
rate and return a table of groups that comprise less than 2% of individuals.
Defaults to True.

Returns Object containing results of the disparity calculation.
Return type Disparity

2.1.13 segmented_adverse_impact_ratio

solas_disparity.segmented_adverse_impact_ratio (...)
Calculates within-segment and cross-segment disparate impact and statistical significance statis-
tics for dichotomous outcomes when it is appropriate to aggregate segment results to a single
cross-segment measurement of disparity. A segment might be a market, location, type of job, or
some other discrete unit.
The Adverse Impact Ratio (AIR) is calculated within each segment and cross-segment.
AIR is defined as the percentage of favorable outcomes of the protected group divided by
the percentage of favorable outcomes of the reference group.
\text{AIR}_\text{Protected Group} = \frac{\text{% Favorable Outcome}_\text{Protected

SolasAI, Release

26 Chapter 2. Python API Reference

Group}}{\text{% Favorable Outcome}_\text{Reference Group}}
The cross-segment AIR attempts to control for the fact that the protected class may be distributed
across segments differently from the reference class. In order to account for this, this method
keeps the distribution of protected group members constant across the segments, but reallocates
the reference group members according to the protected group members’ distribution. It does
keep the protected group and reference group favorable outcome rates constant within each
segment. In this way, the method is able to adjust for different distributions of class members by
segment, but test whether the overall acceptance rates differ across classes.
Two cross-segment tests for statistical significance are performed: the Cochran-Mantel-Haenszel,
CMH, test, which tests whether all segment-level odds ratios are equal to 1.0; and the Bres-
low-Day test, which tests whether segment level odds ratios are equal to each other.
When one can reject the Breslow-Day test, the p-values from the segment level tests (i.e., the Fish-
er’s Exact or Chi-Squared tests) are assessed against critical values derived from the Benja-
mani-Hochberg Procedure for multiple testing, rather than the standard 2-tailed 5% rule.
When one cannot reject the Breslow-Day test, then the CMH practical significance results can be
applied to within-segment practical significance. If overwrite_segment_results=True, then
the within-segment practical significance results are overwritten with the CMH practical signifi-
cance results. By setting overwrite_segment_results=False, within-segment results will
not be overwritten. For the case where group count is zero in a segment, the practical significance
will remain "" and not be overwritten.
Parameters • group_data (DataFrame) – Dataframe containing columns for group data.

• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (Series) – Boolean outcome series where a value of 1 is assumed to
be favorable.

• air_threshold (float) – Adverse Impact Ratio threshold value.
• percent_difference_threshold (float) – Percent difference threshold

value. For example, a 20% difference is input as
percent_difference_threshold=0.2.

• fdr_threshold (float) – False discovery rate (fdr) threshold value used in
calculating whether segment-level results are statistically significant using
the Benjamani-Hochberg Procedure.

• segment (Series) – Segment series.
• label (Optional[Series], optional) – Boolean label, true outcome,

and/or target series evaluated alongside outcome. Defaults to None.
• sample_weight (Optional[Series], optional) – Sample weight series.

Has the same length as group_data. Defaults to None.
• max_for_fishers (int, optional) – Maximum value of samples for Fish-

er’s exact test to be used. Defaults to MAX_FOR_FISHERS.
• shift_zeros (bool, optional) – If True, if any cell count in a contin-

gency table used in the CMH and Breslow-Day tests is zero, then 0.5 is added
to all values in the contingency table so an odds ratio is able to be calculated.
Note: In large sample sizes, this correction will not make a significant differ-
ence. In small sample sizes, this correction has the potential to impact
the significance determination. Defaults to True.

Returns Object containing results of the disparity calculation.

 SolasAI, Release

2.1. solas_disparity 27

Return type Disparity

2.1.14 selection_impact_ratio

solas_disparity.selection_impact_ratio (...)
Calculate the selection impact ratio.
Parameters • group_data (DataFrame) – Dataframe containing columns for group data.

• race_ethnicity_groups (List[str]) – A list of race/ethnicity groups
corresponding to individual columns in group_data (e.g. [“Hispanic or Latino”,
“White”, “Black or African American”, “Native Hawaiian or Pacific Islander”,
“Asian”, “Native American or Alaska Native”, “Two or More Races”]).

• gender_groups (List[str]) – A list of gender groups corresponding to
individual columns in group_data (e.g. [“Male”, “Female”]).

• outcome (Series) – Boolean outcome series.
• ratio_threshold (float) – Threshold at which a ratio is considered signifi-

cant.
• difference_threshold (float) – Threshold at which a difference is

considered significant.
• sample_weight (Optional[Series], optional) – Sample weight series.

Has the same length as group_data. Defaults to None.
• max_for_fishers (int, optional) – Maximum value of samples for Fish-

er’s exact test to be used. Defaults to MAX_FOR_FISHERS.
• shortfall_method (Optional[types.ShortfallMethod],
optional) – Method used for shortfall calculation. Defaults to Shortfall-
Method.TO_REFERENCE_MEAN.

• drop_small_groups (Optional[bool], optional) – Whether to sepa-
rate and return a table of groups that comprise less than 2% of individuals.
Defaults to True.

Returns Object containing results of the disparity calculation.
Return type Disparity

2.1.15 standardized_mean_difference

solas_disparity.standardized_mean_difference (...)
Calculate the Standardized Mean Difference (SMD) for a given set of protected and reference
groups.
The SMD is the mean outcome of a protected group minus the mean outcome of a reference
group all divided by the standard deviation of outcomes.
\text{SMD}_\text{Protected Group} = \frac{\text{Mean Outcome}_{\text{Protected Group}} -
\text{Mean Outcome}_{\text{Reference Group}}}{s}
An SMD is considered practically significant if lower_score_favorable=True and the SMD
is:

1. greater than a chosen smd_threshold
2. AND statistically significantly different than zero.

Alternatively, an SMD is considered practically significant if lower_score_favorable=False
and the SMD is:

1. lesser than a chosen smd_threshold
2. AND statistically significantly different than zero.

SolasAI, Release

28 Chapter 2. Python API Reference

Parameters • group_data (DataFrame) – Dataframe containing columns for group data.
• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (Series) – Outcome series.
• smd_threshold (float) – Standardized Mean Difference threshold value.
• lower_score_favorable (bool, optional) – Whether a lower value of
outcome is favorable. Defaults to True.

• label (Optional[Series], optional) – Label, true outcome, and/or
target series evaluated alongside outcome. Defaults to None.

• sample_weight (Optional[Series], optional) – Sample weight series.
Has the same length as group_data. Defaults to None.

• smd_denominator (SMDDenominator, optional) – Standardized Mean
Difference denominator calculation. Defaults to SMDDenominator.POPULA-
TION.

Returns Object containing results of the disparity calculation.
Return type Disparity

2.1.16 true_negative_rate

solas_disparity.true_negative_rate (...)
This method calculates the True Negative Rate (TNR) for a given set of protected and refer-
ence groups.

Also know as Specificity or Selectivity.
True Negative Rate (TNR) = True Negatives / (True Negatives + False Positives)
An TPR is considered “practically significant” if the TNR is:

1. less than a chosen ratio_threshold.
2. statistically significantly different than parity, AND
3. greater than difference_threshold.

Note Ratio is defined as (TNR of Protected Group) / (TNR of Reference Group)
Difference is defined as (TNR of Reference Group) - (TNR of Protected Group)

Parameters • group_data (DataFrame) – Dataframe containing columns for group data.
• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (Series) – Outcome series.
• label (Optional[Series], optional) – Label, true outcome, and/or

target series evaluated alongside outcome. Defaults to None.

 SolasAI, Release

2.1. solas_disparity 29

• ratio_threshold (float) – Threshold at which a ratio is considered signifi-
cant.

• difference_threshold (float) – Threshold at which a difference is
considered significant.

• sample_weight (Optional[Series], optional) – Sample weight series.
Has the same length as group_data. Defaults to None.

• statistical_significance_test (Optional[StatSigTest],
optional) – Statistical significance test that will be factored into practical
significance if not None. Defaults to None.

• p_value_threshold (float, optional) – Statistical significance test that
will be factored into practical significance if not None. Defaults to None.
Defaults to 0.05.

• statistical_significance_arguments (Dict[str, Any],
optional) – A dictionary of arbitrary arguments to the statistical significance
test function. Every function corresponds to a member of StatSigTest.
Defaults to dict().

Returns Object containing results of the disparity calculation.
Return type Disparity

2.1.17 true_positive_rate

solas_disparity.true_positive_rate (...)
This method calculates the True Positve Rate (TPR) for a given set of protected and reference
groups.

Also know as Sensitivity, Recall or Hit Rate.
True Positive Rate (TPR) = True Positives / (True Positives + False Negatives)
An TPR is considered “practically significant” if the TPR is:

1. less than a chosen ratio_threshold.
2. statistically significantly different than parity, AND
3. greater than difference_threshold.

Note Ratio is defined as (TPR of Protected Group) / (TPR of Reference Group)
Difference is defined as (TPR of Reference Group) - (TPR of Protected Group)

Parameters • group_data (DataFrame) – Dataframe containing columns for group data.
• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (Series) – Outcome series.
• label (Optional[Series], optional) – Label, true outcome, and/or

target series evaluated alongside outcome. Defaults to None.
• ratio_threshold (float) – Threshold at which a ratio is considered signifi-

cant.
• difference_threshold (float) – Threshold at which a difference is

SolasAI, Release

30 Chapter 2. Python API Reference

considered significant.
• sample_weight (Optional[Series], optional) – Sample weight series.

Has the same length as group_data. Defaults to None.
• statistical_significance_test (Optional[StatSigTest],
optional) – Statistical significance test that will be factored into practical
significance if not None. Defaults to None.

• p_value_threshold (float, optional) – Statistical significance test that
will be factored into practical significance if not None. Defaults to None.
Defaults to 0.05.

• statistical_significance_arguments (Dict[str, Any],
optional) – A dictionary of arbitrary arguments to the statistical significance
test function. Every function corresponds to a member of StatSigTest.
Defaults to dict().

Returns Object containing results of the disparity calculation.
Return type Disparity

Modules

solas_disparity.const
Constants used throughout solas-disparity
library.

solas_disparity.disparity
solas_disparity.plots
solas_disparity.statistical_significance
solas_disparity.types
solas_disparity.utils

2.1.18 solas_disparity.const

Constants used throughout solas-disparity library.

2.1.19 solas_disparity.disparity

Functions

adverse_impact_ratio
Calculate the Adverse Impact Ratio (AIR) for
a given set of protected and reference groups.

adverse_impact_ratio_by_quantile
Calculate the Adverse Impact Ratio for speci-
fied quantiles.

categorical_adverse_impact_ratio
Calculate the Adverse Impact Ratio for a set of
favorability-ordinal categorical outcomes.

custom_disparity_metric
Provide a modular format that to create
a custom disparity metric.

false_discovery_rate
This method calculates the False Discovery
Rate (FDR) for a given set of protected and
reference groups.

false_negative_rate
This method calculates the False Negative Rate
(FNR) for a given set of protected and refer-
ence groups.

false_positive_rate
This method calculates the False Positive Rate
(FPR) for a given set of protected and reference
groups.

odds_ratio
Calculate the Odds Ratio for a given set of
protected and reference groups.

 SolasAI, Release

2.1. solas_disparity 31

precision
This method calculates the Precision for
a given set of protected and reference groups.

residual_standardized_mean_difference
Calculate the Standardized Mean Difference of
residuals for a given set of protected and refer-
ence groups.

scoring_impact_ratio
Calculate the scoring impact ratio, an impact
ratio where the boolean outcome is whether
an individual scored above the median.

segmented_adverse_impact_ratio

Calculates within-segment and cross-segment
disparate impact and statistical significance
statistics for dichotomous outcomes when it is
appropriate to aggregate segment results to
a single cross-segment measurement of dispar-
ity.

selection_impact_ratio Calculate the selection impact ratio.

standardized_mean_difference
Calculate the Standardized Mean Difference
(SMD) for a given set of protected and refer-
ence groups.

true_negative_rate
This method calculates the True Negative Rate
(TNR) for a given set of protected and refer-
ence groups.

true_positive_rate
This method calculates the True Positve Rate
(TPR) for a given set of protected and reference
groups.

adverse_impact_ratio

solas_disparity.disparity.adverse_impact_ratio (...)
Calculate the Adverse Impact Ratio (AIR) for a given set of protected and reference groups.
AIR is defined as the percentage of favorable outcomes of the protected group divided by
the percentage of favorable outcomes of the reference group. For example, if 10% of Black or
African American applicants were to receive a loan offer, but 20% of Non-Hispanic White appli-
cants were to receive a loan offer, the AIR is equal to 10% / 20% = 0.50.
\text{AIR}_\text{Protected Group} = \frac{\text{% Favorable Outcome}_\text{Protected
Group}}{\text{% Favorable Outcome}_\text{Reference Group}}
Or, in terms of the confusion matrix:
\text{AIR}_\text{Protected Group} = \frac{\frac{P_{\text{Protected Group}}}{(P_{\text{Protected
Group}} + N_{\text{Protected Group}})}}{\frac{P_{\text{Reference Group}}}{(P_{\text{Reference
Group}} + N_{\text{Reference Group}})}}
Where P represents the positive outcomes (i.e., TP + FP) and N represents the negative outcomes
(i.e., TN + FN). Importantly, for this implementation of the AIR, we consider P to be favorable
from the perspective of the person being scored by the model.
In some academic literature, the AIR is called the “disparate impact” metric. While it is true that
the AIR may be used as a measure of disparate impact, other metrics are used to measure
disparate impact in the legal sense of the word. Additionally, the AIR can also be used to
measure other forms of discrimination, such as disparate treatment.
An AIR is considered practically significant if the AIR is:

1. less than a chosen air_threshold,
2. statistically significantly different than parity,
3. AND if its percent difference greater than a chosen
percent_difference_threshold.

Parameters • group_data (pd.DataFrame) – Dataframe containing columns for group
data.

SolasAI, Release

32 Chapter 2. Python API Reference

• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (pd.Series) – Boolean outcome series where a value of 1 is
assumed to be favorable.

• air_threshold (float) – Adverse Impact Ratio threshold value.
• percent_difference_threshold (float) – Percent difference threshold

value. For example, a 20% difference is input as
percent_difference_threshold=0.2.

• label (Optional[pd.Series], optional) – Boolean label, true outcome,
and/or target series evaluated alongside outcome. Defaults to None.

• sample_weight (Optional[pd.Series], optional) – Sample weight
series. Has the same length as group_data. Defaults to None.

• max_for_fishers (int, optional) – Maximum value of samples for Fish-
er’s exact test to be used. Defaults to MAX_FOR_FISHERS.

• shortfall_method (Optional[types.ShortfallMethod],
optional) – Method used for shortfall calculation. Defaults to Shortfall-
Method.TO_REFERENCE_MEAN.

Returns Object containing results of the disparity calculation.
Return type types.Disparity

adverse_impact_ratio_by_quantile

solas_disparity.disparity.adverse_impact_ratio_by_quantile (...)
Calculate the Adverse Impact Ratio for specified quantiles.
AIR is defined as the percentage of favorable outcomes of the protected group divided by
the percentage of favorable outcomes of the reference group.
\text{AIR}_\text{Protected Group} = \frac{\text{% Favorable Outcome}_\text{Protected
Group}}{\text{% Favorable Outcome}_\text{Reference Group}}
An AIR is considered practically significant if the AIR is:

1. less than a chosen air_threshold,
2. statistically significantly different than parity,
3. AND greater than a chosen percent_difference_threshold.

Parameters • group_data (DataFrame) – Dataframe containing columns for group data.
• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (Series) – Outcome series.
• air_threshold (float) – Adverse Impact Ratio threshold value.
• percent_difference_threshold (float) – Percent difference threshold

value. For example, a 20% difference is input as

 SolasAI, Release

2.1. solas_disparity 33

percent_difference_threshold=0.2.
• quantiles (List[float]) – Set of quantiles at which the AIR will be calcu-

lated (e.g. [0.2, 0.4, 0.6, 0.8, 1.0]).
• label (Optional[Series], optional) – Label, true outcome, and/or

target series evaluated alongside outcome. Defaults to None.
• sample_weight (Optional[Series], optional) – Sample weight series.

Has the same length as group_data. Defaults to None.
• max_for_fishers (int, optional) – Maximum value of samples for Fish-

er’s exact test to be used. Defaults to MAX_FOR_FISHERS.
• lower_score_favorable (bool, optional) – Whether a lower value of
outcome is favorable. Defaults to True.

• merge_bins (bool, optional) – Whether quantiles with same cutoff are
merged into one. Defaults to True.

Returns Object containing results of the disparity calculation.
Return type Disparity

categorical_adverse_impact_ratio

solas_disparity.disparity.categorical_adverse_impact_ratio (...)
Calculate the Adverse Impact Ratio for a set of favorability-ordinal categorical outcomes.
AIR is defined as the percentage of favorable outcomes of the protected group divided by
the percentage of favorable outcomes of the reference group.
\text{AIR}_\text{Protected Group} = \frac{\text{% Favorable Outcome}_\text{Protected
Group}}{\text{% Favorable Outcome}_\text{Reference Group}}
An AIR is considered practically significant if the AIR is:

1. less than a chosen air_threshold,
2. statistically significantly different than parity,
3. AND greater than a chosen percent_difference_threshold.

Parameters • group_data (DataFrame) – Dataframe containing columns for group data.
• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (Series) – Outcome series of elements of the set category_order.
• air_threshold (float) – Adverse Impact Ratio threshold value.
• percent_difference_threshold (float) – Percent difference threshold

value. For example, a 20% difference is input as
percent_difference_threshold=0.2.

• category_order (List[str]) – Series of outcome categories in ascending
order of favorability (e.g. ["bad", "good", "great", "best"]).

• label (Optional[Series], optional) – Label, true outcome, and/or
target series evaluated alongside outcome. Defaults to None.

• sample_weight (Optional[Series], optional) – Sample weight series.
Has the same length as group_data. Defaults to None.

SolasAI, Release

34 Chapter 2. Python API Reference

• max_for_fishers (int, optional) – Maximum value of samples for Fish-
er’s exact test to be used. Defaults to MAX_FOR_FISHERS.

Returns Object containing results of the disparity calculation.
Return type Disparity

custom_disparity_metric

solas_disparity.disparity.custom_disparity_metric (...)
Provide a modular format that to create a custom disparity metric.
Parameters • group_data (DataFrame) – Dataframe containing columns for group data.

• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (Series) – Outcome series.
• metric (Callable[..., Union[int, float]]) – A function of

an outcome, label, and/or sample weight that returns a scalar. Typical argu-
ment names such as those used by sklearn.metrics or SolasAI disparity testing
functions.

• label (Optional[Series], optional) – Label, true outcome, and/or
target series evaluated alongside outcome. Defaults to None.

• sample_weight (Optional[Series], optional) – Sample weight series.
Has the same length as group_data. Defaults to None.

• difference_calculation (Optional[DifferenceCalculation],
optional) – Method for calculating the difference between group metrics.
Defaults to DifferenceCalculation.REFERENCE_MINUS_PROTECTED.

• difference_threshold (Optional[Callable[[Union[int,
float]], bool]], optional) – A function of the difference between
protected and reference group metrics that returns whether the difference is
significant. This will be factored into practical significance if not None. Defaults
to lambda difference:(difference < 0.0).

• ratio_calculation (Optional[RatioCalculation], optional) –
Method for calculating the ratio between group metrics. Defaults to RatioCal-
culation.PROTECTED_OVER_REFERENCE.

• ratio_threshold (Optional[Callable[[Union[int, float]],
bool]], optional) – A function of the ratio between protected and refer-
ence group metrics that returns whether the difference is significant. This will
be factored into practical significance if not None. Defaults to None.

• statistical_significance_test (Optional[StatSigTest],
optional) – Statistical significance test that will be factored into practical
significance if not None. Defaults to None.

• p_value_threshold (float, optional) – P-value threshold for statistical
significance. Defaults to 0.05.

• statistical_significance_arguments (Dict[str, Any],
optional) – A dictionary of arbitrary arguments to the statistical significance
test function. Every function corresponds to a member of StatSigTest.
Defaults to dict().

 SolasAI, Release

2.1. solas_disparity 35

Returns Object containing results of the disparity calculation.
Return type Disparity

false_discovery_rate

solas_disparity.disparity.false_discovery_rate (...)
This method calculates the False Discovery Rate (FDR) for a given set of protected and reference
groups.

False Discovery Rate (FDR) = False Positives / (False Positives + True Positives)
An TPR is considered “practically significant” if the FDR is:

1. higher than ratio_threshold.
2. statistically significantly different than parity, AND
3. lesser than difference_threshold.

Note Ratio is defined as (FDR of Reference Group) / (FDR of Protected Group)
Difference is defined as (FDR of Protected Group) - (FDR of Reference Group)

Parameters • group_data (DataFrame) – Dataframe containing columns for group data.
• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (Series) – Outcome series.
• label (Optional[Series], optional) – Label, true outcome, and/or

target series evaluated alongside outcome. Defaults to None.
• ratio_threshold (float) – Threshold at which a ratio is considered signifi-

cant.
• difference_threshold (float) – Threshold at which a difference is

considered significant.
• sample_weight (Optional[Series], optional) – Sample weight series.

Has the same length as group_data. Defaults to None.
• statistical_significance_test (Optional[StatSigTest],
optional) – Statistical significance test that will be factored into practical
significance if not None. Defaults to None.

• p_value_threshold (float, optional) – Statistical significance test that
will be factored into practical significance if not None. Defaults to None.
Defaults to 0.05.

• statistical_significance_arguments (Dict[str, Any],
optional) – A dictionary of arbitrary arguments to the statistical significance
test function. Every function corresponds to a member of StatSigTest.
Defaults to dict().

Returns Object containing results of the disparity calculation.
Return type Disparity

SolasAI, Release

36 Chapter 2. Python API Reference

false_negative_rate

solas_disparity.disparity.false_negative_rate (...)
This method calculates the False Negative Rate (FNR) for a given set of protected and refer-
ence groups.

Also know as Fall-out.
False Negative Rate (FNR) = False Negatives / (False Negatives + True Positives)
An TPR is considered “practically significant” if the FPR is:

1. higher than ratio_threshold.
2. statistically significantly different than parity, AND
3. lesser than difference_threshold.

Note Ratio is defined as (FNR of Reference Group) / (FNR of Protected Group)
Difference is defined as (FNR of Protected Group) - (FNR of Reference Group)

Parameters • group_data (DataFrame) – Dataframe containing columns for group data.
• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (Series) – Outcome series.
• label (Optional[Series], optional) – Label, true outcome, and/or

target series evaluated alongside outcome. Defaults to None.
• ratio_threshold (float) – Threshold at which a ratio is considered signifi-

cant.
• difference_threshold (float) – Threshold at which a difference is

considered significant.
• sample_weight (Optional[Series], optional) – Sample weight series.

Has the same length as group_data. Defaults to None.
• statistical_significance_test (Optional[StatSigTest],
optional) – Statistical significance test that will be factored into practical
significance if not None. Defaults to None.

• p_value_threshold (float, optional) – Statistical significance test that
will be factored into practical significance if not None. Defaults to None.
Defaults to 0.05.

• statistical_significance_arguments (Dict[str, Any],
optional) – A dictionary of arbitrary arguments to the statistical significance
test function. Every function corresponds to a member of StatSigTest.
Defaults to dict().

Returns Object containing results of the disparity calculation.
Return type Disparity

 SolasAI, Release

2.1. solas_disparity 37

false_positive_rate

solas_disparity.disparity.false_positive_rate (...)
This method calculates the False Positive Rate (FPR) for a given set of protected and reference
groups.

Also know as Fall-out.
False Positive Rate (FPR) = False Positives / (False Positives + True Negatives)
An TPR is considered “practically significant” if the FPR is:

1. higher than ratio_threshold.
2. statistically significantly different than parity, AND
3. lesser than difference_threshold.

Note Ratio is defined as (FPR of Reference Group) / (FPR of Protected Group)
Difference is defined as (FPR of Protected Group) - (FPR of Reference Group)

Parameters • group_data (DataFrame) – Dataframe containing columns for group data.
• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (Series) – Outcome series.
• label (Optional[Series], optional) – Label, true outcome, and/or

target series evaluated alongside outcome. Defaults to None.
• ratio_threshold (float) – Threshold at which a ratio is considered signifi-

cant.
• difference_threshold (float) – Threshold at which a difference is

considered significant.
• sample_weight (Optional[Series], optional) – Sample weight series.

Has the same length as group_data. Defaults to None.
• statistical_significance_test (Optional[StatSigTest],
optional) – Statistical significance test that will be factored into practical
significance if not None. Defaults to None.

• p_value_threshold (float, optional) – Statistical significance test that
will be factored into practical significance if not None. Defaults to None.
Defaults to 0.05.

• statistical_significance_arguments (Dict[str, Any],
optional) – A dictionary of arbitrary arguments to the statistical significance
test function. Every function corresponds to a member of StatSigTest.
Defaults to dict().

Returns Object containing results of the disparity calculation.
Return type Disparity

odds_ratio

solas_disparity.disparity.odds_ratio (...)
Calculate the Odds Ratio for a given set of protected and reference groups.

SolasAI, Release

38 Chapter 2. Python API Reference

The odds of a favorable outcome is the probability of a favorable outcome divided by its comple-
ment.
\text{Favorable Outcome Odds} = \frac{P(\text{Favorable Outcome})}{P(\text{Favorable
Outcome})^\complement}
The Odds Ratio is defined as the odds of a favorable outcome of the protected group divided by
that of the reference group.
\text{Odds Ratio}_\text{Protected Group} = \frac{\text{Favorable Outcome Odds}_\text{Pro-
tected Group}}{\text{Favorable Outcome Odds}_\text{Reference Group}}
An Odds Ratio is considered practically significant if lower_score_favorable=False and
the Odds Ratio is:

1. lesser than a chosen odds_ratio_threshold,
2. statistically significantly different than parity,
3. AND greater than a chosen percent_difference_threshold.

Alternatively, an Odds Ratio is considered practically significant if
lower_score_favorable=True and the Odds Ratio is:

1. greater than a chosen odds_ratio_threshold,
2. statistically significantly different than parity,
3. AND greater than a chosen percent_difference_threshold.

Parameters • group_data (DataFrame) – Dataframe containing columns for group data.
• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (Series) – Boolean outcome series.
• odds_ratio_threshold (float) – Odds Ratio threshold value.
• percent_difference_threshold (float) – Percent difference threshold

value. For example, a 20% difference is input as
percent_difference_threshold=0.2.

• lower_score_favorable (bool, optional) – Whether a lower value of
outcome (i.e. 0) is favorable. Defaults to False.

• label (Optional[Series], optional) – Boolean label, true outcome,
and/or target series evaluated alongside outcome. Defaults to None.

• sample_weight (Optional[Series], optional) – Sample weight series.
Has the same length as group_data. Defaults to None.

• max_for_fishers (int, optional) – Maximum value of samples for Fish-
er’s exact test to be used. Defaults to MAX_FOR_FISHERS.

Returns Object containing results of the disparity calculation.
Return type Disparity

precision

solas_disparity.disparity.precision (...)
This method calculates the Precision for a given set of protected and reference groups.

Also know as Precision.

 SolasAI, Release

2.1. solas_disparity 39

Precision = True Positives / (True Positives + False Positives)
An TPR is considered “practically significant” if the Precision is:

1. less than a chosen ratio_threshold.
2. statistically significantly different than parity, AND
3. greater than difference_threshold.

Note Ratio is defined as (Precision of Protected Group) / (Precision of Reference Group)
Difference is defined as (Precision of Reference Group) - (Precision of Protected Group)

Parameters • group_data (DataFrame) – Dataframe containing columns for group data.
• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (Series) – Outcome series.
• label (Optional[Series], optional) – Label, true outcome, and/or

target series evaluated alongside outcome. Defaults to None.
• ratio_threshold (float) – Threshold at which a ratio is considered signifi-

cant.
• difference_threshold (float) – Threshold at which a difference is

considered significant.
• sample_weight (Optional[Series], optional) – Sample weight series.

Has the same length as group_data. Defaults to None.
• statistical_significance_test (Optional[StatSigTest],
optional) – Statistical significance test that will be factored into practical
significance if not None. Defaults to None.

• p_value_threshold (float, optional) – Statistical significance test that
will be factored into practical significance if not None. Defaults to None.
Defaults to 0.05.

• statistical_significance_arguments (Dict[str, Any],
optional) – A dictionary of arbitrary arguments to the statistical significance
test function. Every function corresponds to a member of StatSigTest.
Defaults to dict().

Returns Object containing results of the disparity calculation.
Return type Disparity

residual_standardized_mean_difference

solas_disparity.disparity.residual_standardized_mean_difference (...)
Calculate the Standardized Mean Difference of residuals for a given set of protected and reference
groups.
A residual is the label value minus the predicted value.
\text{Residual} = y - \hat{y}
The Residual SMD is the mean residual of a protected group minus the mean residual of a refer-
ence group all divided by the standard deviation of residuals.
\text{Residual SMD}_\text{Protected Group} = \frac{\text{Mean Residual}_{\text{Protected

SolasAI, Release

40 Chapter 2. Python API Reference

Group}} - \text{Mean Residual}_{\text{Reference Group}}}{s}
A Residual SMD is considered practically significant if lower_score_favorable=True and
the Residual SMD is:

1. greater in magnitude than a chosen residual_smd_threshold
2. AND statistically significantly different than zero.

Alternatively, a Residual SMD is considered practically significant if
lower_score_favorable=False and the Residual SMD is:

1. lesser in magnitude than a chosen residual_smd_threshold
2. AND statistically significantly different than zero.

Parameters • group_data (DataFrame) – Dataframe containing columns for group data.
• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups.
• group_categories (List[str]) – List of group categories.
• prediction – (Series): Predictions series.
• label (Series) – Label, true outcome, and/or target series evaluated along-

side outcome. Defaults to None.
• residual_smd_threshold (float) – Residual Standardized Mean Differ-

ence threshold value.
• lower_score_favorable (bool, optional) – Whether a lower value of
label - prediction is favorable. Defaults to True.

• sample_weight – Optional[Series]: Sample weight series. Has the same
length as group_data. Defaults to None.

• residual_smd_denominator (Union[ResidualSMDDenominator,
str], optional) – Residual Standardized Mean Difference denominator
calculation. Defaults to ResidualSMDDenominator.POPULATION.

Returns Object containing results of the disparity calculation.
Return type Disparity

scoring_impact_ratio

solas_disparity.disparity.scoring_impact_ratio (...)
Calculate the scoring impact ratio, an impact ratio where the boolean outcome is whether an indi-
vidual scored above the median.
Parameters • group_data (DataFrame) – Dataframe containing columns for group data.

• race_ethnicity_groups (List[str]) – A list of race/ethnicity groups
corresponding to individual columns in group_data (e.g. [“Hispanic or Latino”,
“White”, “Black or African American”, “Native Hawaiian or Pacific Islander”,
“Asian”, “Native American or Alaska Native”, “Two or More Races”]).

• gender_groups (List[str]) – A list of gender groups corresponding to
individual columns in group_data (e.g. [“Male”, “Female”]).

• outcome (Series) – Outcome series of scores.
• ratio_threshold (float) – Threshold at which a ratio is considered signifi-

cant.
• difference_threshold (float) – Threshold at which a difference is

considered significant.

 SolasAI, Release

2.1. solas_disparity 41

• sample_weight (Optional[Series], optional) – Sample weight series.
Has the same length as group_data. Defaults to None.

• max_for_fishers (int, optional) – Maximum value of samples for Fish-
er’s exact test to be used. Defaults to MAX_FOR_FISHERS.

• shortfall_method (Optional[types.ShortfallMethod],
optional) – Method used for shortfall calculation. Defaults to Shortfall-
Method.TO_REFERENCE_MEAN.

• drop_small_groups (Optional[bool], optional) – Whether to sepa-
rate and return a table of groups that comprise less than 2% of individuals.
Defaults to True.

Returns Object containing results of the disparity calculation.
Return type Disparity

segmented_adverse_impact_ratio

solas_disparity.disparity.segmented_adverse_impact_ratio (...)
Calculates within-segment and cross-segment disparate impact and statistical significance statis-
tics for dichotomous outcomes when it is appropriate to aggregate segment results to a single
cross-segment measurement of disparity. A segment might be a market, location, type of job, or
some other discrete unit.
The Adverse Impact Ratio (AIR) is calculated within each segment and cross-segment.
AIR is defined as the percentage of favorable outcomes of the protected group divided by
the percentage of favorable outcomes of the reference group.
\text{AIR}_\text{Protected Group} = \frac{\text{% Favorable Outcome}_\text{Protected
Group}}{\text{% Favorable Outcome}_\text{Reference Group}}
The cross-segment AIR attempts to control for the fact that the protected class may be distributed
across segments differently from the reference class. In order to account for this, this method
keeps the distribution of protected group members constant across the segments, but reallocates
the reference group members according to the protected group members’ distribution. It does
keep the protected group and reference group favorable outcome rates constant within each
segment. In this way, the method is able to adjust for different distributions of class members by
segment, but test whether the overall acceptance rates differ across classes.
Two cross-segment tests for statistical significance are performed: the Cochran-Mantel-Haenszel,
CMH, test, which tests whether all segment-level odds ratios are equal to 1.0; and the Bres-
low-Day test, which tests whether segment level odds ratios are equal to each other.
When one can reject the Breslow-Day test, the p-values from the segment level tests (i.e., the Fish-
er’s Exact or Chi-Squared tests) are assessed against critical values derived from the Benja-
mani-Hochberg Procedure for multiple testing, rather than the standard 2-tailed 5% rule.
When one cannot reject the Breslow-Day test, then the CMH practical significance results can be
applied to within-segment practical significance. If overwrite_segment_results=True, then
the within-segment practical significance results are overwritten with the CMH practical signifi-
cance results. By setting overwrite_segment_results=False, within-segment results will
not be overwritten. For the case where group count is zero in a segment, the practical significance
will remain "" and not be overwritten.
Parameters • group_data (DataFrame) – Dataframe containing columns for group data.

• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (Series) – Boolean outcome series where a value of 1 is assumed to
be favorable.

SolasAI, Release

42 Chapter 2. Python API Reference

• air_threshold (float) – Adverse Impact Ratio threshold value.
• percent_difference_threshold (float) – Percent difference threshold

value. For example, a 20% difference is input as
percent_difference_threshold=0.2.

• fdr_threshold (float) – False discovery rate (fdr) threshold value used in
calculating whether segment-level results are statistically significant using
the Benjamani-Hochberg Procedure.

• segment (Series) – Segment series.
• label (Optional[Series], optional) – Boolean label, true outcome,

and/or target series evaluated alongside outcome. Defaults to None.
• sample_weight (Optional[Series], optional) – Sample weight series.

Has the same length as group_data. Defaults to None.
• max_for_fishers (int, optional) – Maximum value of samples for Fish-

er’s exact test to be used. Defaults to MAX_FOR_FISHERS.
• shift_zeros (bool, optional) – If True, if any cell count in a contin-

gency table used in the CMH and Breslow-Day tests is zero, then 0.5 is added
to all values in the contingency table so an odds ratio is able to be calculated.
Note: In large sample sizes, this correction will not make a significant differ-
ence. In small sample sizes, this correction has the potential to impact
the significance determination. Defaults to True.

Returns Object containing results of the disparity calculation.
Return type Disparity

selection_impact_ratio

solas_disparity.disparity.selection_impact_ratio (...)
Calculate the selection impact ratio.
Parameters • group_data (DataFrame) – Dataframe containing columns for group data.

• race_ethnicity_groups (List[str]) – A list of race/ethnicity groups
corresponding to individual columns in group_data (e.g. [“Hispanic or Latino”,
“White”, “Black or African American”, “Native Hawaiian or Pacific Islander”,
“Asian”, “Native American or Alaska Native”, “Two or More Races”]).

• gender_groups (List[str]) – A list of gender groups corresponding to
individual columns in group_data (e.g. [“Male”, “Female”]).

• outcome (Series) – Boolean outcome series.
• ratio_threshold (float) – Threshold at which a ratio is considered signifi-

cant.
• difference_threshold (float) – Threshold at which a difference is

considered significant.
• sample_weight (Optional[Series], optional) – Sample weight series.

Has the same length as group_data. Defaults to None.
• max_for_fishers (int, optional) – Maximum value of samples for Fish-

er’s exact test to be used. Defaults to MAX_FOR_FISHERS.
• shortfall_method (Optional[types.ShortfallMethod],
optional) – Method used for shortfall calculation. Defaults to Shortfall-
Method.TO_REFERENCE_MEAN.

• drop_small_groups (Optional[bool], optional) – Whether to sepa-
rate and return a table of groups that comprise less than 2% of individuals.
Defaults to True.

 SolasAI, Release

2.1. solas_disparity 43

Returns Object containing results of the disparity calculation.
Return type Disparity

standardized_mean_difference

solas_disparity.disparity.standardized_mean_difference (...)
Calculate the Standardized Mean Difference (SMD) for a given set of protected and reference
groups.
The SMD is the mean outcome of a protected group minus the mean outcome of a reference
group all divided by the standard deviation of outcomes.
\text{SMD}_\text{Protected Group} = \frac{\text{Mean Outcome}_{\text{Protected Group}} -
\text{Mean Outcome}_{\text{Reference Group}}}{s}
An SMD is considered practically significant if lower_score_favorable=True and the SMD
is:

1. greater than a chosen smd_threshold
2. AND statistically significantly different than zero.

Alternatively, an SMD is considered practically significant if lower_score_favorable=False
and the SMD is:

1. lesser than a chosen smd_threshold
2. AND statistically significantly different than zero.

Parameters • group_data (DataFrame) – Dataframe containing columns for group data.
• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (Series) – Outcome series.
• smd_threshold (float) – Standardized Mean Difference threshold value.
• lower_score_favorable (bool, optional) – Whether a lower value of
outcome is favorable. Defaults to True.

• label (Optional[Series], optional) – Label, true outcome, and/or
target series evaluated alongside outcome. Defaults to None.

• sample_weight (Optional[Series], optional) – Sample weight series.
Has the same length as group_data. Defaults to None.

• smd_denominator (SMDDenominator, optional) – Standardized Mean
Difference denominator calculation. Defaults to SMDDenominator.POPULA-
TION.

Returns Object containing results of the disparity calculation.
Return type Disparity

true_negative_rate

solas_disparity.disparity.true_negative_rate (...)
This method calculates the True Negative Rate (TNR) for a given set of protected and refer-
ence groups.

Also know as Specificity or Selectivity.
True Negative Rate (TNR) = True Negatives / (True Negatives + False Positives)

SolasAI, Release

44 Chapter 2. Python API Reference

An TPR is considered “practically significant” if the TNR is:
1. less than a chosen ratio_threshold.
2. statistically significantly different than parity, AND
3. greater than difference_threshold.

Note Ratio is defined as (TNR of Protected Group) / (TNR of Reference Group)
Difference is defined as (TNR of Reference Group) - (TNR of Protected Group)

Parameters • group_data (DataFrame) – Dataframe containing columns for group data.
• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (Series) – Outcome series.
• label (Optional[Series], optional) – Label, true outcome, and/or

target series evaluated alongside outcome. Defaults to None.
• ratio_threshold (float) – Threshold at which a ratio is considered signifi-

cant.
• difference_threshold (float) – Threshold at which a difference is

considered significant.
• sample_weight (Optional[Series], optional) – Sample weight series.

Has the same length as group_data. Defaults to None.
• statistical_significance_test (Optional[StatSigTest],
optional) – Statistical significance test that will be factored into practical
significance if not None. Defaults to None.

• p_value_threshold (float, optional) – Statistical significance test that
will be factored into practical significance if not None. Defaults to None.
Defaults to 0.05.

• statistical_significance_arguments (Dict[str, Any],
optional) – A dictionary of arbitrary arguments to the statistical significance
test function. Every function corresponds to a member of StatSigTest.
Defaults to dict().

Returns Object containing results of the disparity calculation.
Return type Disparity

true_positive_rate

solas_disparity.disparity.true_positive_rate (...)
This method calculates the True Positve Rate (TPR) for a given set of protected and reference
groups.

Also know as Sensitivity, Recall or Hit Rate.
True Positive Rate (TPR) = True Positives / (True Positives + False Negatives)
An TPR is considered “practically significant” if the TPR is:

1. less than a chosen ratio_threshold.
2. statistically significantly different than parity, AND

 SolasAI, Release

2.1. solas_disparity 45

3. greater than difference_threshold.

Note Ratio is defined as (TPR of Protected Group) / (TPR of Reference Group)
Difference is defined as (TPR of Reference Group) - (TPR of Protected Group)

Parameters • group_data (DataFrame) – Dataframe containing columns for group data.
• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (Series) – Outcome series.
• label (Optional[Series], optional) – Label, true outcome, and/or

target series evaluated alongside outcome. Defaults to None.
• ratio_threshold (float) – Threshold at which a ratio is considered signifi-

cant.
• difference_threshold (float) – Threshold at which a difference is

considered significant.
• sample_weight (Optional[Series], optional) – Sample weight series.

Has the same length as group_data. Defaults to None.
• statistical_significance_test (Optional[StatSigTest],
optional) – Statistical significance test that will be factored into practical
significance if not None. Defaults to None.

• p_value_threshold (float, optional) – Statistical significance test that
will be factored into practical significance if not None. Defaults to None.
Defaults to 0.05.

• statistical_significance_arguments (Dict[str, Any],
optional) – A dictionary of arbitrary arguments to the statistical significance
test function. Every function corresponds to a member of StatSigTest.
Defaults to dict().

Returns Object containing results of the disparity calculation.
Return type Disparity

2.1.20 solas_disparity.plots

Functions

plot_adverse_impact_ratio Generate a plot for an AIR result object.

plot_adverse_impact_ratio_by_quantile
Generate a plot for an AIR-by-quantile
result object.

plot_categorical_adverse_impact_ratio
Generate a plot for a categorical AIR
result object.

plot_custom_disparity_metric
Generate a plot for a custom disparity
metric result object.

plot_false_discovery_rate Generate a plot for an FDR result object.
plot_false_negative_rate Generate a plot for an FNR result object.
plot_false_positive_rate Generate a plot for an FPR result object.

SolasAI, Release

46 Chapter 2. Python API Reference

plot_odds_ratio
Generate a plot for an odds ratio result
object.

plot_precision
Generate a plot for a precision result
object.

plot_residual_standardized_mean_difference
Generate a plot for an residual SMD
result object.

plot_scoring_impact_ratio
Generate a plot for a categorical AIR
result object.

plot_segmented_adverse_impact_ratio
Generate a plot for a segmented AIR
result object.

plot_selection_impact_ratio
Generate a plot for a categorical AIR
result object.

plot_standardized_mean_difference Generate a plot for an SMD result object.
plot_true_negative_rate Generate a plot for a TNR result object.
plot_true_positive_rate Generate a plot for an TPR result object.

plot_wasserstein
Generate a plot for a Wasserstein result
object.

plot_adverse_impact_ratio

solas_disparity.plots.plot_adverse_impact_ratio (...)
Generate a plot for an AIR result object.
Parameters • disparity (Disparity) – Disparity result.

• column (str, optional) – Column to plot. Defaults to const.AIR_VALUES.

Returns An interactive plotly figure.
Return type Figure

plot_adverse_impact_ratio_by_quantile

solas_disparity.plots.plot_adverse_impact_ratio_by_quantile (...)
Generate a plot for an AIR-by-quantile result object.
Parameters • disparity (Disparity) – Disparity result.

• column (str, optional) – Column to plot. Defaults to const.AIR_VALUES.
• quantile (Optional[Union[str, float]], optional) – Quantile slice

of the summary table to plot. If None, plot all quantiles. Defaults to None.
• separate (bool, optional) – Whether to generate a separate figure for

each quantile. Defaults to False.
• group (Optional[str], optional) – Group slice of the summary table to

plot. If None, plot all groups. Defaults to None.

Returns A figure or list of interactive plotly figures if separate is set to True.
Return type Union[Figure, List[Figure]]

plot_categorical_adverse_impact_ratio

solas_disparity.plots.plot_categorical_adverse_impact_ratio (...)
Generate a plot for a categorical AIR result object.
Parameters • disparity (Disparity) – Disparity result.

• column (str, optional) – Column to plot. Defaults to const.AIR_VALUES.
• category (Optional[Union[str, float]], optional) – Category

 SolasAI, Release

2.1. solas_disparity 47

slice of the summary table to plot. If None, plot all quantiles. Defaults to None.
• separate (bool, optional) – Whether to generate a separate figure for

each category. Defaults to False.
• group (Optional[str], optional) – Group slice of the summary table to

plot. If None, plot all groups. Defaults to None.

Returns A figure or list of interactive plotly figures if separate is set to True.
Return type Union[Figure, List[Figure]]

plot_custom_disparity_metric

solas_disparity.plots.plot_custom_disparity_metric (...)
Generate a plot for a custom disparity metric result object.
Parameters • disparity (Disparity) – Disparity result.

• column (Optional[str], optional) – Column to plot. If None, the func-
tion will try to plot the ratio, difference, and metric in that order. Defaults to
None.

Returns An interactive plotly figure.
Return type Figure

plot_false_discovery_rate

solas_disparity.plots.plot_false_discovery_rate (...)
Generate a plot for an FDR result object.
Parameters • disparity (Disparity) – Disparity result.

• column (str, optional) – Column to plot. Defaults to const.RATIO.

Returns An interactive plotly figure.
Return type Figure

plot_false_negative_rate

solas_disparity.plots.plot_false_negative_rate (...)
Generate a plot for an FNR result object.
Parameters • disparity (Disparity) – Disparity result.

• column (str, optional) – Column to plot. Defaults to const.RATIO.

Returns An interactive plotly figure.
Return type Figure

plot_false_positive_rate

solas_disparity.plots.plot_false_positive_rate (...)
Generate a plot for an FPR result object.
Parameters • disparity (Disparity) – Disparity result.

• column (str, optional) – Column to plot. Defaults to const.RATIO.

Returns An interactive plotly figure.
Return type Figure

SolasAI, Release

48 Chapter 2. Python API Reference

plot_odds_ratio

solas_disparity.plots.plot_odds_ratio (...)
Generate a plot for an odds ratio result object.
Parameters • disparity (Disparity) – Disparity result.

• column (str, optional) – Column to plot. Defaults to const.ODDS_RATIO.

Returns An interactive plotly figure.
Return type Figure

plot_precision

solas_disparity.plots.plot_precision (...)
Generate a plot for a precision result object.
Parameters • disparity (Disparity) – Disparity result.

• column (str, optional) – Column to plot. Defaults to const.RATIO.

Returns An interactive plotly figure.
Return type Figure

plot_residual_standardized_mean_difference

solas_disparity.plots.plot_residual_standardized_mean_difference (...)
Generate a plot for an residual SMD result object.
Parameters • disparity (Disparity) – Disparity result.

• column (str, optional) – Column to plot. Defaults to const.RESIDUAL_S-
MD_VALUES.

Returns An interactive plotly figure.
Return type Figure

plot_scoring_impact_ratio

solas_disparity.plots.plot_scoring_impact_ratio (...)
Generate a plot for a categorical AIR result object.
Parameters • disparity (Disparity) – Disparity result.

• column (str, optional) – Column to plot. Defaults to const.IMPACT_RA-
TIO.

• group_category (Optional[Union[str, float]], optional) – Cate-
gory slice of the summary table to plot.

• None (If) – “Race/Ethinicty”, “Gender” and “Intersectional”. Defaults to
None

• categories (plot all group) – “Race/Ethinicty”, “Gender” and “Inter-
sectional”. Defaults to None

• separate (bool, optional) – Whether to generate a separate figure for
each category. Defaults to False.

Returns A figure or list of interactive plotly figures if separate is set to True.
Return type Union[Figure, List[Figure]]

 SolasAI, Release

2.1. solas_disparity 49

plot_segmented_adverse_impact_ratio

solas_disparity.plots.plot_segmented_adverse_impact_ratio (...)
Generate a plot for a segmented AIR result object.
Parameters • disparity (Disparity) – Disparity result.

• column (str, optional) – Column to plot. Defaults to const.AIR_VALUES.
• segment (Optional[str], optional) – Segment slice of the summary

table to plot. If None, plot all segments. Defaults to None.
• separate (bool, optional) – Whether to generate a separate figure for

each segment. Defaults to False.
• group (Optional[str], optional) – Group slice of the summary table to

plot. If None, plot all groups. Defaults to None.

Returns A figure or list of interactive plotly figures if separate is set to True.
Return type Union[Figure, List[Figure]]

plot_selection_impact_ratio

solas_disparity.plots.plot_selection_impact_ratio (...)
Generate a plot for a categorical AIR result object.
Parameters • disparity (Disparity) – Disparity result.

• column (str, optional) – Column to plot. Defaults to const.IMPACT_RA-
TIO.

• group_category (Optional[Union[str, float]], optional) – Cate-
gory slice of the summary table to plot.

• None (If) – “Race/Ethinicty”, “Gender” and “Intersectional”. Defaults to
None

• categories (plot all group) – “Race/Ethinicty”, “Gender” and “Inter-
sectional”. Defaults to None

• separate (bool, optional) – Whether to generate a separate figure for
each category. Defaults to False.

Returns A figure or list of interactive plotly figures if separate is set to True.
Return type Union[Figure, List[Figure]]

plot_standardized_mean_difference

solas_disparity.plots.plot_standardized_mean_difference (...)
Generate a plot for an SMD result object.
Parameters • disparity (Disparity) – Disparity result.

• column (str, optional) – Column to plot. Defaults to const.SMD_VALUES.

Returns An interactive plotly figure.
Return type Figure

plot_true_negative_rate

solas_disparity.plots.plot_true_negative_rate (...)
Generate a plot for a TNR result object.
Parameters • disparity (Disparity) – Disparity result.

SolasAI, Release

50 Chapter 2. Python API Reference

• column (str, optional) – Column to plot. Defaults to const.RATIO.

Returns An interactive plotly figure.
Return type Figure

plot_true_positive_rate

solas_disparity.plots.plot_true_positive_rate (...)
Generate a plot for an TPR result object.
Parameters • disparity (Disparity) – Disparity result.

• column (str, optional) – Column to plot. Defaults to const.RATIO.

Returns An interactive plotly figure.
Return type Figure

plot_wasserstein

solas_disparity.plots.plot_wasserstein (...)
Generate a plot for a Wasserstein result object.
Parameters • disparity (Disparity) – Disparity result.

• column (str, optional) – Column to plot. Defaults to const.UNFAVOR-
ABLE_DISPARITY.

Returns An interactive plotly figure.
Return type Figure

2.1.21 solas_disparity.statistical_significance

Functions

bootstrapping Conduct bootstrapping for statistical significance.
chi_squared_test Conduct a chi-squared test for contingency tables.
fishers_exact Conduct Fisher's exact test for contingency tables.
fishers_or_chi_squared Conduct either a Fisher's exact test or a chi-squared test.

stacked_regression
Create a stacked regression dataset and use it to conduct
a two-sample t-test.

two_sample_t_test Conduct a two-sample t-test.

bootstrapping

solas_disparity.statistical_significance.bootstrapping (...)
Conduct bootstrapping for statistical significance.
Parameters • group_data (DataFrame) – Dataframe containing columns for group data.

• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (Series) – Outcome series.
• sample_weight (Optional[Series], optional) – Sample weight series.

Has the same length as group_data. Defaults to None.

 SolasAI, Release

2.1. solas_disparity 51

• resamples (int, optional) – The number of independent resamples.
Defaults to const.RESAMPLES.

• sample (Union[float, int], optional) – The sample size or sample
fraction. Defaults to const.SAMPLE.

• seed (Optional[int], optional) – Random seed passed through to
numpy.random.default_rng. Defaults to None.

• replace (bool, optional) – Whether to sample with replacement.
Defaults to False.

Raises NotImplementedError – Bootstrapping will be implemented soon.
Returns Statistical significance result object.
Return type StatSig

chi_squared_test

solas_disparity.statistical_significance.chi_squared_test (...)
Conduct a chi-squared test for contingency tables.
Parameters • group_data (DataFrame) – Dataframe containing columns for group data.

• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (Series) – Outcome series.
• sample_weight (Optional[Series], optional) – Sample weight series.

Has the same length as group_data. Defaults to None.

Returns Statistical significance result object.
Return type StatSig

fishers_exact

solas_disparity.statistical_significance.fishers_exact (...)
Conduct Fisher’s exact test for contingency tables.
Parameters • group_data (DataFrame) – Dataframe containing columns for group data.

• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (Series) – Outcome series.
• sample_weight (Optional[Series], optional) – Sample weight series.

Has the same length as group_data. Defaults to None.

Returns Statistical significance result object.
Return type StatSig

SolasAI, Release

52 Chapter 2. Python API Reference

fishers_or_chi_squared

solas_disparity.statistical_significance.fishers_or_chi_squared (...)
Conduct either a Fisher’s exact test or a chi-squared test. If max_for_fishers is greater than any
value of the expected or observed contingency table, the Fisher’s exact test is conducted. Else,
the chi-squared test is conducted.
Parameters • group_data (DataFrame) – Dataframe containing columns for group data.

• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (Series) – Outcome series.
• sample_weight (Optional[pd.Series], optional) – Sample weight

series. Has the same length as group_data. Defaults to None.
• max_for_fishers (Union[int, float], optional) – Maximum value

of samples for Fisher’s exact test to be used. Defaults to const.MAX_FOR_FISH-
ERS.

Returns Statistical significance result object.
Return type StatSig

stacked_regression

solas_disparity.statistical_significance.stacked_regression (...)
Create a stacked regression dataset and use it to conduct a two-sample t-test.
Parameters • group_data (DataFrame) – Dataframe containing columns for group data.

• protected_groups (List[str]) – List of protected groups.
• reference_groups (List[str]) – List of reference groups with the same

length as protected_groups.
• group_categories (List[str]) – List of group categories to which each

protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (Series) – Outcome series.
• regression_type (StatSigRegressionType, optional) – Type of

regression to be performed. Defaults to StatSigRegressionType.GAUSSIAN.
• sample_weight (Optional[Series], optional) – Sample weight series.

Defaults to None.

Returns Statistical significance result object.
Return type StatSig

two_sample_t_test

solas_disparity.statistical_significance.two_sample_t_test (...)
Conduct a two-sample t-test.
Parameters • group_data (DataFrame) – Dataframe containing columns for group data.

• protected_groups (List[str]) – List of protected groups.

 SolasAI, Release

2.1. solas_disparity 53

• reference_groups (List[str]) – List of reference groups with the same
length as protected_groups.

• group_categories (List[str]) – List of group categories to which each
protected and reference group pair belongs to (e.g. race, gender, age, etc.). Has
the same length as protected_groups.

• outcome (Series) – Outcome series.
• sample_weight (Optional[Series], optional) – Sample weight series.

Has the same length as group_data. Defaults to None.

Raises NotImplementedError – Bootstrapping will be implemented soon.
Returns Statistical significance result object.
Return type StatSig

2.1.22 solas_disparity.types

Classes

DifferenceCalculation Enum class denoting possible difference calculations.
Disparity Dataclass for disparity objects.
DisparityCalculation Enum class denoting possible disparity calculations.
DisparityResponse
EnumBase Enum base class.
RatioCalculation Enum class denoting possible ratio calculations.
ResidualSMDDenominator Enum class denoting possible SMD denominators.
SMDDenominator Enum class denoting possible SMD denominators.
ShortfallMethod Enum class denoting possible shortfall methods.
StatSig Dataclass for statistical significance test outputs.

StatSigRegressionType
Enum class denoting possible regression types to be performed by
stacked regression.

StatSigTest Enum class denoting possible statistical significance tests.

DifferenceCalculation

class solas_disparity.types.DifferenceCalculation (...)
Enum class denoting possible difference calculations.
Attributes

REFERENCE_MINUS_PROTECTED
PROTECTED_MINUS_REFERENCE

Disparity

class solas_disparity.types.Disparity (...)
Dataclass for disparity objects.
Methods

__init__ Method generated by attrs for class Disparity.
show
to_excel Export summary table as an XLSX file.

Attributes

affected_categories
Group categories that correspond to practically
significant groups.

SolasAI, Release

54 Chapter 2. Python API Reference

affected_groups
Protected groups that have practically significant
adverse disparities.

affected_reference
Reference groups that correspond to practically
significant groups.

plot

report
Data in NYC Department of Consumer and Worker
Protection format.

disparity_type Type of disparity calculation.
summary_table Summary table of disparity calculation results.
protected_groups Protected group names.
reference_groups Reference group names.
group_categories Group category names.
statistical_significance StatSig object.
smd_threshold Standardized mean difference threshold.
residual_smd_threshold Residual Standardized mean difference threshold.
smd_denominator Standardized mean difference denominator.
residual_smd_denominator Residual standardized mean difference denominator.

lower_score_favorable
Is a lower pre-transformation prediction favorable? If
True, then the model's predictions are assumed to be
more favorable the lower the value.

odds_ratio_threshold Odds ratio threshold.
air_threshold AIR threshold.
percent_difference_threshold Percent difference threshold value.

max_for_fishers
Max value of samples for Fishers Exact test to be
used.

shortfall_method Shortfall method.

fdr_threshold
False discovery rate threshold for use when calcu-
lating segment-level results are statistically signifi-
cant using the Benjamani-Hochberg Procedure.

metric Metric Requested
difference_calculation Difference Calculation.

difference_threshold
Difference threshold as a float set only for curated
custom disparity metrics such as FDR.

ratio_calculation Ratio Calculation.

ratio_threshold
Ratio threshold as float set only for curated custom
disparity metrics such as FDR.

statistical_significance_test Statistical Significance Method
p_value_threshold Statistical Significance P-value Threshold

shift_zeros

If True, if any cell count in a contingency table used
in the CMH and Breslow-Day tests is zero, then 0.5 is
added to all values in the contingency table so
an odds ratio is able to be calculated.

drop_small_groups
Whether to separate and return a table of groups that
comprise less than 2% of individuals.

small_group_table Groups comprising less than 2% of individuals.

unknown_table
Summary of individuals with unknown demo-
graphic information.

property affected_categories: Optional[List[str]]
Group categories that correspond to practically significant groups.

 SolasAI, Release

2.1. solas_disparity 55

property affected_groups: List[str]
Protected groups that have practically significant adverse disparities.

property affected_reference: List[str]
Reference groups that correspond to practically significant groups.

air_threshold: Optional[float]
AIR threshold. Set by the user, this takes a float that represents the AIR level below which
Solas will identify as being indicative of a practically significant disparity. Legal and compli-
ance counsel should be sought for the appropriate AIR threshold in a given use case.

difference_calculation:
Optional[solas_disparity.types._difference_calculation.DifferenceCalculation]

Difference Calculation.

difference_threshold: Optional[float]
Difference threshold as a float set only for curated custom disparity metrics such as FDR.

disparity_type: solas_disparity.types._disparity_calculation.DisparityCalculation
Type of disparity calculation.

drop_small_groups: bool
Whether to separate and return a table of groups that comprise less than 2% of individuals.

fdr_threshold: Optional[float]
False discovery rate threshold for use when calculating segment-level results are statistically
significant using the Benjamani-Hochberg Procedure.

group_categories: List[str]
Group category names. Same length as protected_groups. Set by the user, this takes
a list of strings which represent the reference groups (also known as control groups) being
analyzed. There must be a one-to-one correspondence between reference groups and protect-
ed_groups. Note that the protected groups and reference groups are aligned by index in
the lists.

lower_score_favorable: Optional[bool]
Is a lower pre-transformation prediction favorable? If True, then the model’s predictions are
assumed to be more favorable the lower the value. If False, then the model’s predictions are
assumed to be more favorable the higher the value. Optional. If omitted, defaults to True.

max_for_fishers: Optional[int]
Max value of samples for Fishers Exact test to be used. Defaults to const.MAX_FOR_FISH-
ERS. Set by the user, this takes an integer and defaults to 100.

metric: Callable[[...], Union[int, float]]
Metric Requested

odds_ratio_threshold: Optional[float]
Odds ratio threshold.

p_value_threshold: float
Statistical Significance P-value Threshold

percent_difference_threshold: Optional[float]
Percent difference threshold value. For example, if percent_difference_threshold = 0.2, then
the difference in percent favorable will need to exceed 20% for a result to be practically
significant.

SolasAI, Release

56 Chapter 2. Python API Reference

protected_groups: List[str]
Protected group names. Set by the user, this takes a list of strings which represent
the protected groups being analyzed. There can be as few as one protected group and there
is no upper limit to the number of protected groups that can be analyzed.

ratio_calculation: Optional[solas_disparity.types._ratio_calculation.RatioCalculation]
Ratio Calculation.

ratio_threshold: Optional[float]
Ratio threshold as float set only for curated custom disparity metrics such as FDR.

reference_groups: List[str]
Reference group names. Same length as protected_groups. Set by the user, this takes
a list of strings which represent the reference groups (also known as control groups) being
analyzed. There must be a one-to-one correspondence between reference groups and protect-
ed_groups. Note that the protected groups and reference groups are aligned by index in
the lists.

property report: Tuple[pandas.core.frame.DataFrame, pandas.core.frame.DataFrame,
pandas.core.frame.DataFrame]

Data in NYC Department of Consumer and Worker Protection format.
Raises ValueError – If the disparity calculation is not supported
Returns Gender, Race/Ethnicity, and Intersectional tables.
Return type Tuple[DataFrame, DataFrame, DataFrame]

residual_smd_denominator: Optional[str]
Residual standardized mean difference denominator. Defaults to ResidualSMDDenomina-
tor.POPULATION.

residual_smd_threshold: Optional[float]
Residual Standardized mean difference threshold.

shift_zeros: bool
If True, if any cell count in a contingency table used in the CMH and Breslow-Day tests is
zero, then 0.5 is added to all values in the contingency table so an odds ratio is able to be
calculated. Note: In large sample sizes, this correction will not make a significant difference.
In small sample sizes, this correction has the potential to impact the significance determina-
tion. Defaults to True.

shortfall_method: Optional[solas_disparity.types._shortfall_method.ShortfallMethod]
Shortfall method. Set by the user. Determines the value of the const.SHORTFALL column in
Disparity.summary_table. Defaults to ShortfallMethod.TO_REFERENCE_MEAN.

small_group_table: pandas.core.frame.DataFrame
Groups comprising less than 2% of individuals.

smd_denominator: Optional[str]
Standardized mean difference denominator. Defaults to SMDDenominator.POPULATION.
This defines how the standard deviation of scores is set. Options include either “population”
or “pooled”.

smd_threshold: Optional[float]
Standardized mean difference threshold. Set by the user, this takes a float that represents
the SMD level which Solas will identify as being indicative of a practically significant dispar-
ity. Legal and compliance counsel should be sought for the appropriate SMD threshold in
a given use case.

 SolasAI, Release

2.1. solas_disparity 57

statistical_significance: Optional[solas_disparity.types._stat_sig.StatSig]
StatSig object. Contains statistical significance information stated in
Disparity.summary_table and sometimes more than the former.

statistical_significance_test:
Optional[solas_disparity.types._stat_sig_test.StatSigTest]

Statistical Significance Method

summary_table: pandas.core.frame.DataFrame
Summary table of disparity calculation results. Provided as a Pandas DataFrame. This is
a stand-alone version of the summary table provided by .disparity

to_excel (file_path: Union[str, pathlib.Path])
Export summary table as an XLSX file.
Parameters file_path (Union[str, Path]) – Path to file.

unknown_table: pandas.core.frame.DataFrame
Summary of individuals with unknown demographic information.

DisparityCalculation

class solas_disparity.types.DisparityCalculation (...)
Enum class denoting possible disparity calculations.
Attributes

ADVERSE_IMPACT_RATIO
SEGMENTED_ADVERSE_IMPACT_RATIO
ADVERSE_IMPACT_RATIO_BY_QUANTILE
CATEGORICAL_ADVERSE_IMPACT_RATIO
STANDARDIZED_MEAN_DIFFERENCE
RESIDUAL_STANDARDIZED_MEAN_DIFFERENCE
ODDS_RATIO
CUSTOM_DISPARITY_METRIC
TRUE_POSITIVE_RATE
TRUE_NEGATIVE_RATE
FALSE_POSITIVE_RATE
FALSE_NEGATIVE_RATE
PRECISION
FALSE_DISCOVERY_RATE
SCORING_IMPACT_RATIO
SELECTION_IMPACT_RATIO
NOT_SET

DisparityResponse

class solas_disparity.types.DisparityResponse (...)
Methods

__init__
Create a new model by parsing and validating input data from
keyword arguments.

construct
Creates a new model setting __dict__ and __fields_set__ from
trusted or pre-validated data.

copy
Duplicate a model, optionally choose which fields to include,
exclude and change.

SolasAI, Release

58 Chapter 2. Python API Reference

dict
Generate a dictionary representation of the model, optionally spec-
ifying which fields to include or exclude.

from_disparity
from_orm

json
Generate a JSON representation of the model, include and exclude
arguments as per dict().

parse_file
parse_obj
parse_raw
schema
schema_json

update_forward_refs
Try to update ForwardRefs on fields based on this Model, globalns
and localns.

validate

Attributes

metadata
disparity_type Type of disparity calculation performed.
summary_table_json Summary table of disparity calculation results.
summary_table_json_flat Summary table of disparity calculation results.
protected_groups Protected group names.
reference_groups Reference group names.
group_categories Group category names.
outcome Column containing ordinal value of each category
air_threshold AIR threshold.
percent_difference_threshold Percent difference threshold value.

label
A string representing the name of the label column in
group_data.

sample_weight
A string representing the name of the column in
group_data.

max_for_fishers
The maximum number of groups that can be used for
Fisher's Exact Test.

shortfall_method
smd_threshold Standardized mean difference threshold.

lower_score_favorable
Is a lower pre-transformation prediction favorable? If
True, then the model's predictions are assumed to be
more favorable the lower the value.

smd_denominator The denominator used for the SMD calculation.
plot_json Plot of disparity calculation results.

air_threshold: Optional[float]
AIR threshold. Set by the user, this takes a float that represents the AIR level below which
Solas will identify as being indicative of a practically significant disparity. Legal and compli-
ance counsel should be sought for the appropriate AIR threshold in a given use case.

disparity_type: solas_disparity.types._disparity_calculation.DisparityCalculation
Type of disparity calculation performed.

group_categories: List[str]
Group category names. Same length as protected_groups. Set by the user, this takes
a list of strings which represent the reference groups (also known as control groups) being
analyzed. There must be a one-to-one correspondence between reference groups and protect-
ed_groups. Note that the protected groups and reference groups are aligned by index in

 SolasAI, Release

2.1. solas_disparity 59

the lists.

label: Optional[str]
A string representing the name of the label column in group_data.

lower_score_favorable: Optional[bool]
Is a lower pre-transformation prediction favorable? If True, then the model’s predictions are
assumed to be more favorable the lower the value. If False, then the model’s predictions are
assumed to be more favorable the higher the value. Optional. If omitted, defaults to True.

max_for_fishers: Optional[int]
The maximum number of groups that can be used for Fisher’s Exact Test. If the number of
groups is greater than this value, Fisher’s Exact Test will not be used. Instead,
the chi-squared test will be used.

outcome: Optional[str]
Column containing ordinal value of each category

percent_difference_threshold: Optional[float]
Percent difference threshold value. For example, if percent_difference_threshold = 0.2, then
the difference in percent favorable will need to exceed 20% for a result to be practically
significant.

plot_json: Optional[str]
Plot of disparity calculation results. Provided as a Plotly json definition.

protected_groups: List[str]
Protected group names. Set by the user, this takes a list of strings which represent
the protected groups being analyzed. There can be as few as one protected group and there
is no upper limit to the number of protected groups that can be analyzed.

reference_groups: List[str]
Reference group names. Same length as protected_groups. Set by the user, this takes
a list of strings which represent the reference groups (also known as control groups) being
analyzed. There must be a one-to-one correspondence between reference groups and protect-
ed_groups. Note that the protected groups and reference groups are aligned by index in
the lists.

sample_weight: Optional[str]
A string representing the name of the column in group_data.

smd_denominator: Optional[solas_disparity.types._smd_denominator.SMDDenominator]
The denominator used for the SMD calculation.

smd_threshold: Optional[float]
Standardized mean difference threshold. Set by the user, this takes a float that represents
the SMD level which Solas will identify as being indicative of a practically significant dispar-
ity. Legal and compliance counsel should be sought for the appropriate SMD threshold in
a given use case.

summary_table_json: str
Summary table of disparity calculation results. Provided as a Pandas DataFrame in json
format.

summary_table_json_flat: str
Summary table of disparity calculation results. Provided as a list of dictionaries. Each dictio-
nary represents a row in the table. Provides a flat representation of the table.

SolasAI, Release

60 Chapter 2. Python API Reference

EnumBase

class solas_disparity.types.EnumBase (...)
Enum base class.

RatioCalculation

class solas_disparity.types.RatioCalculation (...)
Enum class denoting possible ratio calculations.
Attributes

REFERENCE_OVER_PROTECTED
PROTECTED_OVER_REFERENCE

ResidualSMDDenominator

class solas_disparity.types.ResidualSMDDenominator (...)
Enum class denoting possible SMD denominators.
Attributes

POOLED
POPULATION

SMDDenominator

class solas_disparity.types.SMDDenominator (...)
Enum class denoting possible SMD denominators.
Attributes

POOLED
POPULATION

ShortfallMethod

class solas_disparity.types.ShortfallMethod (...)
Enum class denoting possible shortfall methods.
Attributes

TO_REFERENCE_MEAN
TO_COMBINED_MEAN

StatSig

class solas_disparity.types.StatSig (...)
Dataclass for statistical significance test outputs.
Methods

__init__ Method generated by attrs for class StatSig.

Attributes

stat_sig_test Statistical significance test.
summary_table Summary table of results.

stat_sig_test: solas_disparity.types._stat_sig_test.StatSigTest
Statistical significance test.

 SolasAI, Release

2.1. solas_disparity 61

summary_table: pandas.core.frame.DataFrame
Summary table of results.

StatSigRegressionType

class solas_disparity.types.StatSigRegressionType (...)
Enum class denoting possible regression types to be performed by stacked regression.
Attributes

GAUSSIAN
LOGISTIC

StatSigTest

class solas_disparity.types.StatSigTest (...)
Enum class denoting possible statistical significance tests.
Attributes

FISHERS_OR_CHI_SQUARED
FISHERS_EXACT
CHI_SQUARED_TEST
TWO_SAMPLE_T_TEST
STACKED_REGRESSION
BOOTSTRAPPING

2.1.23 solas_disparity.utils

Functions

pgrg_ordered Create an ordered list of protected and reference groups.

pgrg_ordered

solas_disparity.utils.pgrg_ordered (...)
Create an ordered list of protected and reference groups.
Parameters • protected_groups (List[str]) – List of protected groups.

• reference_groups (List[str]) – List of reference groups associated with
each protected group.

• group_categories (Optional[List[str]], optional) – Group cate-
gories associated with each protected group. If None, ordered group categories
are returned alongside unique group names. Defaults to None.

Returns List of ordered protected and reference groups. May also include group categories if
group_categories is set.

Return type List[str]
Examples

>>> protected_groups = ["black", "asian", "female", "hispanic"]
>>> reference_groups = ["white", "white", "male", "white"]
>>> pgrg_orderd(protected_groups, reference_groups)
["black", "asian", "hispanic", "white", "female", "male"]

SolasAI, Release

62 Chapter 2. Python API Reference

Chapter 3

As a PDF

Chapter 3

 63

SolasAI, Release

64 Chapter 4. Indices & Tables

Chapter 4

Indices & Tables

• genindex
• modindex
• search

 65

Python Module Index

s
solas_disparity, 15

solas_disparity.const, 31
solas_disparity.disparity, 31
solas_disparity.plots, 46
solas_disparity.statistical_significance,

51
solas_disparity.types, 54
solas_disparity.utils, 62

 67

SolasAI, Release

68 Python Module Index

Index

A
adverse_impact_ratio() (in module solas_dis-

parity), 16
adverse_impact_ratio() (in module solas_dis-

parity.disparity), 32
adverse_impact_ratio_by_quantile() (in module

solas_disparity), 17
adverse_impact_ratio_by_quantile() (in module

solas_disparity.disparity), 33
affected_categories (solas_disparity.types.Dis-

parity property), 55
affected_groups (solas_disparity.types.Dis-

parity property), 56
affected_reference (solas_disparity.types.Dis-

parity property), 56
air_threshold (solas_disparity.types.Disparity

attribute), 56
air_threshold (solas_disparity.types.Dispari-

tyResponse attribute), 59

B
bootstrapping() (in module solas_disparity.sta-

tistical_significance), 51

C
categorical_adverse_impact_ratio() (in module

solas_disparity), 18
categorical_adverse_impact_ratio() (in module

solas_disparity.disparity), 34
chi_squared_test() (in module solas_disparity.s-

tatistical_significance), 52
custom_disparity_metric() (in module

solas_disparity), 19
custom_disparity_metric() (in module

solas_disparity.disparity), 35

D
difference_calculation (solas_disparity.type-

s.Disparity attribute), 56
difference_threshold (solas_disparity.types.Dis-

parityattribute), 56
DifferenceCalculation (class in solas_disparity.-

types), 54
Disparity (class in solas_disparity.types), 54
disparity_type (solas_disparity.types.Disparity

attribute), 56
disparity_type (solas_disparity.types.Dispari-

tyResponse attribute), 59
DisparityCalculation (class in solas_disparity.-

types), 58
DisparityResponse (class in solas_disparity.-

types), 58
drop_small_groups (solas_disparity.types.Dis-

parity attribute), 56

E
EnumBase (class in solas_disparity.types), 61

F
false_discovery_rate() (in module solas_dispari-

ty), 20
false_discovery_rate() (in module solas_dispari-

ty.disparity), 36
false_negative_rate() (in module solas_dispari-

ty), 21
false_negative_rate() (in module solas_dispari-

ty.disparity), 37
false_positive_rate() (in module solas_dispari-

ty), 22
false_positive_rate() (in module solas_dispari-

ty.disparity), 38
fdr_threshold (solas_disparity.types.Disparity

attribute), 56
fishers_exact() (in module solas_disparity.sta-

tistical_significance), 52
fishers_or_chi_squared() (in module solas_dis-

parity.statistical_significance), 53

G
group_categories (solas_disparity.types.Dis-

parity attribute), 56
group_categories (solas_disparity.types.Dispar-

 69

ityResponseattribute), 59

L
label (solas_disparity.types.DisparityResponse

attribute), 60
lower_score_favorable (solas_disparity.type-

s.Disparity attribute), 56
lower_score_favorable (solas_disparity.type-

s.DisparityResponse attribute), 60

M
max_for_fishers (solas_disparity.types.Dis-

parity attribute), 56
max_for_fishers (solas_disparity.types.Dispari-

tyResponse attribute), 60
metric (solas_disparity.types.Disparity

attribute), 56
module

solas_disparity, 15
solas_disparity.const, 31
solas_disparity.disparity, 31
solas_disparity.plots, 46
solas_disparity.statistical_significance, 51
solas_disparity.types, 54
solas_disparity.utils, 62

O
odds_ratio() (in module solas_disparity), 23
odds_ratio() (in module solas_disparity.dispari-

ty), 38
odds_ratio_threshold (solas_disparity.type-

s.Disparity attribute), 56
outcome (solas_disparity.types.DisparityRe-

sponse attribute), 60

P
p_value_threshold (solas_disparity.types.Dis-

parity attribute), 56
percent_difference_threshold (solas_disparity.-

types.Disparity attribute), 56
percent_difference_threshold (solas_disparity.-

types.DisparityResponse attribute), 60
pgrg_ordered() (in module solas_disparity), 24
pgrg_ordered() (in module solas_disparity.u-

tils), 62
plot_adverse_impact_ratio() (in module

solas_disparity.plots), 47
plot_adverse_impact_ratio_by_quantile() (in

module solas_disparity.plots), 47
plot_categorical_adverse_impact_ratio() (in

module solas_disparity.plots), 47
plot_custom_disparity_metric() (in module

solas_disparity.plots), 48
plot_false_discovery_rate() (in module

solas_disparity.plots), 48
plot_false_negative_rate() (in module solas_dis-

parity.plots),48
plot_false_positive_rate() (in module solas_dis-

parity.plots), 48
plot_json (solas_disparity.types.DisparityRe-

sponse attribute), 60
plot_odds_ratio() (in module solas_disparity.-

plots), 49
plot_precision() (in module solas_disparity.-

plots), 49
plot_residual_standardized_mean_difference()

(in module solas_disparity.plots), 49
plot_scoring_impact_ratio() (in module

solas_disparity.plots), 49
plot_segmented_adverse_impact_ratio() (in

module solas_disparity.plots), 50
plot_selection_impact_ratio() (in module

solas_disparity.plots), 50
plot_standardized_mean_difference() (in

module solas_disparity.plots), 50
plot_true_negative_rate() (in module solas_dis-

parity.plots), 50
plot_true_positive_rate() (in module solas_dis-

parity.plots), 51
plot_wasserstein() (in module solas_disparity.-

plots), 51
precision() (in module solas_disparity), 24
precision() (in module solas_disparity.dispari-

ty), 39
protected_groups (solas_disparity.types.Dis-

parity attribute), 57
protected_groups (solas_disparity.types.Dis-

parityResponse attribute), 60

R
ratio_calculation (solas_disparity.types.Dis-

parity attribute), 57
ratio_threshold (solas_disparity.types.Disparity

attribute), 57
RatioCalculation (class in solas_disparity.-

types), 61
reference_groups (solas_disparity.types.Dis-

parity attribute), 57
reference_groups (solas_disparity.types.Dispar-

ityResponse attribute), 60
report (solas_disparity.types.Disparity proper-

ty), 57
residual_smd_denominator (solas_disparity.-

types.Disparity attribute), 57
residual_smd_threshold (solas_disparity.type-

s.Disparity attribute), 57
residual_standardized_mean_difference() (in

module solas_disparity), 25
residual_standardized_mean_difference() (in

module solas_disparity.disparity), 40
ResidualSMDDenominator (class in solas_dis-

parity.types), 61

SolasAI, Release

70 Index

S
sample_weight (solas_disparity.types.Dispari-

tyResponse attribute), 60
scoring_impact_ratio() (in module solas_dis-

parity), 26
scoring_impact_ratio() (in module solas_dis-

parity.disparity), 41
segmented_adverse_impact_ratio() (in module

solas_disparity), 26
segmented_adverse_impact_ratio() (in module

solas_disparity.disparity), 42
selection_impact_ratio() (in module solas_dis-

parity), 28
selection_impact_ratio() (in module solas_dis-

parity.disparity), 43
shift_zeros (solas_disparity.types.Disparity

attribute), 57
shortfall_method (solas_disparity.types.Dis-

parity attribute), 57
ShortfallMethod (class in solas_disparity.types),

61
small_group_table (solas_disparity.types.Dis-

parity attribute), 57
smd_denominator (solas_disparity.types.Dis-

parity attribute), 57
smd_denominator (solas_disparity.types.Dis-

parityResponse attribute), 60
smd_threshold (solas_disparity.types.Disparity

attribute), 57
smd_threshold (solas_disparity.types.Dispari-

tyResponse attribute), 60
SMDDenominator (class in solas_disparity.-

types), 61
solas_disparity

module, 15
solas_disparity.const

module, 31
solas_disparity.disparity

module, 31
solas_disparity.plots

module, 46
solas_disparity.statistical_significance

module, 51
solas_disparity.types

module, 54
solas_disparity.utils

module, 62
stacked_regression() (in module solas_dispari-

ty.statistical_significance), 53
standardized_mean_difference() (in module

solas_disparity), 28
standardized_mean_difference() (in module

solas_disparity.disparity), 44
stat_sig_test (solas_disparity.types.StatSig

attribute), 61
statistical_significance (solas_disparity.type-

s.Disparity attribute), 58

statistical_significance_test (solas_disparity.-
types.Disparity attribute), 58

StatSig (class in solas_disparity.types), 61
StatSigRegressionType (class in solas_dispari-

ty.types), 62
StatSigTest (class in solas_disparity.types), 62
summary_table (solas_disparity.types.Disparity

attribute), 58
summary_table (solas_disparity.types.StatSig

attribute), 62
summary_table_json (solas_disparity.types.Dis-

parityResponse attribute), 60
summary_table_json_flat (solas_disparity.type-

s.DisparityResponse attribute), 60

T
to_excel() (solas_disparity.types.Disparity

method), 58
true_negative_rate() (in module solas_dispari-

ty), 29
true_negative_rate() (in module solas_dispari-

ty.disparity), 44
true_positive_rate() (in module solas_dispari-

ty), 30
true_positive_rate() (in module solas_dispari-

ty.disparity), 45
two_sample_t_test() (in module solas_dispari-

ty.statistical_significance), 53

U
unknown_table (solas_disparity.types.Disparity

attribute), 58

 SolasAI, Release

Index 71

	1 Examples
	1.1 SolasAI Disparity Introduction
	1.1.1 Quick Start Summary
	1.1.2 Background
	“Protected” and “Reference” Groups
	Outcomes, Labels, and Segments
	Statistical Significance and Practical Significance

	1.1.3 Importing the Library and Data for Use in the Analysis
	Data Preparation

	1.1.4 Calculating the Adverse Impact Ratio on Prior Lending Decisions
	1.1.5 Overview of SolasAI Disparity Objects with the AIR as an Example
	Disparity Object Output
	Disparity Summary Table Output

	1.1.6 Utility Functions
	1.1.7 Customizing Output

	1.2 SolasAI Disparity Calculations
	1.2.1 Adverse Impact Ratio (AIR)
	1.2.2 Standardized Mean Difference (SMD)
	1.2.3 Adverse Impact Ratio by Quantile
	1.2.4 Odds Ratio
	1.2.5 Categorical Adverse Impact Ratio
	1.2.6 Residual Standardized Mean Difference
	1.2.7 Segmented Adverse Impact Ratio
	1.2.8 Custom Disparity Metric
	1.2.9 Confusion Matrix Metrics

	1.3 SolasAI Disparity Plots
	1.3.1 Single-Level Plots
	Calculate Disparity
	Output Results

	1.3.2 Multi-Level Plots
	Calculate Disparity
	Output Results

	1.3.3 More Plot Functionality

	2 Python API Reference
	2.1 solas_disparity
	2.1.1 adverse_impact_ratio
	2.1.2 adverse_impact_ratio_by_quantile
	2.1.3 categorical_adverse_impact_ratio
	2.1.4 custom_disparity_metric
	2.1.5 false_discovery_rate
	2.1.6 false_negative_rate
	2.1.7 false_positive_rate
	2.1.8 odds_ratio
	2.1.9 pgrg_ordered
	2.1.10 precision
	2.1.11 residual_standardized_mean_difference
	2.1.12 scoring_impact_ratio
	2.1.13 segmented_adverse_impact_ratio
	2.1.14 selection_impact_ratio
	2.1.15 standardized_mean_difference
	2.1.16 true_negative_rate
	2.1.17 true_positive_rate
	2.1.18 solas_disparity.const
	2.1.19 solas_disparity.disparity
	adverse_impact_ratio
	adverse_impact_ratio_by_quantile
	categorical_adverse_impact_ratio
	custom_disparity_metric
	false_discovery_rate
	false_negative_rate
	false_positive_rate
	odds_ratio
	precision
	residual_standardized_mean_difference
	scoring_impact_ratio
	segmented_adverse_impact_ratio
	selection_impact_ratio
	standardized_mean_difference
	true_negative_rate
	true_positive_rate

	2.1.20 solas_disparity.plots
	plot_adverse_impact_ratio
	plot_adverse_impact_ratio_by_quantile
	plot_categorical_adverse_impact_ratio
	plot_custom_disparity_metric
	plot_false_discovery_rate
	plot_false_negative_rate
	plot_false_positive_rate
	plot_odds_ratio
	plot_precision
	plot_residual_standardized_mean_difference
	plot_scoring_impact_ratio
	plot_segmented_adverse_impact_ratio
	plot_selection_impact_ratio
	plot_standardized_mean_difference
	plot_true_negative_rate
	plot_true_positive_rate
	plot_wasserstein

	2.1.21 solas_disparity.statistical_significance
	bootstrapping
	chi_squared_test
	fishers_exact
	fishers_or_chi_squared
	stacked_regression
	two_sample_t_test

	2.1.22 solas_disparity.types
	DifferenceCalculation
	Disparity
	DisparityCalculation
	DisparityResponse
	EnumBase
	RatioCalculation
	ResidualSMDDenominator
	SMDDenominator
	ShortfallMethod
	StatSig
	StatSigRegressionType
	StatSigTest

	2.1.23 solas_disparity.utils
	pgrg_ordered

	3 As a PDF
	4 Indices & Tables
	Python Module Index
	Index

